Power 2: units digit 9. Multiply by 49 again to get power 4: units digit 1. So every 4th power gives units digit 1. So 16th power has units digit 1, so the previous power, the 15th must have units digit 3.
The last digit of a number raised to a power can be determined by finding a pattern in the units digits of the number's powers. For 2 raised to the power of 1997, the units digit will follow a pattern of 2, 4, 8, 6. Since 1997 is one less than a multiple of 4, the last digit will be 8.
3
To find the units digit of a number raised to a power, we can look for patterns in the units digits of the powers of that number. For 2, the units digits of the powers cycle in a pattern: 2, 4, 8, 6. Since 2011 is 3 more than a multiple of 4 (2011 = 4 * 502 + 3), the units digit of 2 to the power of 2011 will be the fourth number in the cycle, which is 6.
When multiplying numbers with the same units digit, the units digit of the product is determined by the units digit of the base number raised to the power of the number of times it is being multiplied. In this case, since 7 is being multiplied 100 times, the units digit of the product will be the same as the units digit of 7^100. The units digit of 7^100 can be found by looking for a pattern in the units digits of powers of 7: 7^1 = 7, 7^2 = 49, 7^3 = 343, 7^4 = 2401, and so on. The pattern repeats every 4 powers, so the units digit of 7^100 will be the same as 7^4, which is 1. Therefore, the units digit of the product when one hundred 7's are multiplied is 1.
61,886,548,790,943,213,277,031,694,336
8.796093e+12= 2 to the 43rd power
The unit's digit in the expansion of 2 raised to the 725th power is 8. This can be determined by using the concept of the "unit's digit law". This law states that the units digit of a number raised to any power is the same as the units digit of the number itself. In this case, the number is 2, which has a units digit of 2, so the units digit of 2 to the 725th power is also 2. However, this is not the final answer. To get the unit's digit of 2 to the 725th power, we must use the "repeating pattern law". This law states that when a number is raised to any power, the unit's digit will follow a repeating pattern. For 2, this pattern is 8, 4, 2, 6. This means that the units digit of 2 to any power will follow this pattern, repeating every 4 powers. So, if we look at the 725th power of 2, we can see that it is in the 4th cycle of this repeating pattern. This means that the units digit of 2 to the 725th power is 8.
Power 2: units digit 9. Multiply by 49 again to get power 4: units digit 1. So every 4th power gives units digit 1. So 16th power has units digit 1, so the previous power, the 15th must have units digit 3.
The last digit of a number raised to a power can be determined by finding a pattern in the units digits of the number's powers. For 2 raised to the power of 1997, the units digit will follow a pattern of 2, 4, 8, 6. Since 1997 is one less than a multiple of 4, the last digit will be 8.
There are some.The last (units) digit is 1 when the power is even and 9 when it is odd.The digital root is a multiple of 9.
Oh, dude, okay, so when you raise 2013 to the power of 2013, you're basically asking what the units digit of that massive number is. Well, lucky for you, you don't need to calculate the whole thing because the units digit of a number repeats in a pattern. So, the units digit of 2013 to the power of 2013 is 7. Cool, right?
The units digit of any number is the number in the ones position. For example, the units digit of 123 is 3; 2324 is 4; and 87321 is one. The reason the answer is 5 for 5 raised to any positive integer is because 5 will always be in the units position. For example, 52 = 25; 53 = 125; 54 = 625; and so on.
It is 4.
1
3
1