The units digit of 20132013 is the same as the units digit of 32013.
The units digit of 34 = units digit of 81 = 1
So units digit of 32013 = 32012+1 = 34*503+1 = 34*503 *31 = 1503*3 = 3
it is 3
7
1
6.
The unit's digit in the expansion of 2 raised to the 725th power is 8. This can be determined by using the concept of the "unit's digit law". This law states that the units digit of a number raised to any power is the same as the units digit of the number itself. In this case, the number is 2, which has a units digit of 2, so the units digit of 2 to the 725th power is also 2. However, this is not the final answer. To get the unit's digit of 2 to the 725th power, we must use the "repeating pattern law". This law states that when a number is raised to any power, the unit's digit will follow a repeating pattern. For 2, this pattern is 8, 4, 2, 6. This means that the units digit of 2 to any power will follow this pattern, repeating every 4 powers. So, if we look at the 725th power of 2, we can see that it is in the 4th cycle of this repeating pattern. This means that the units digit of 2 to the 725th power is 8.
Power 2: units digit 9. Multiply by 49 again to get power 4: units digit 1. So every 4th power gives units digit 1. So 16th power has units digit 1, so the previous power, the 15th must have units digit 3.
1
7
3
1
6.
it is 3
It is 4.
The unit's digit in the expansion of 2 raised to the 725th power is 8. This can be determined by using the concept of the "unit's digit law". This law states that the units digit of a number raised to any power is the same as the units digit of the number itself. In this case, the number is 2, which has a units digit of 2, so the units digit of 2 to the 725th power is also 2. However, this is not the final answer. To get the unit's digit of 2 to the 725th power, we must use the "repeating pattern law". This law states that when a number is raised to any power, the unit's digit will follow a repeating pattern. For 2, this pattern is 8, 4, 2, 6. This means that the units digit of 2 to any power will follow this pattern, repeating every 4 powers. So, if we look at the 725th power of 2, we can see that it is in the 4th cycle of this repeating pattern. This means that the units digit of 2 to the 725th power is 8.
9
61,886,548,790,943,213,277,031,694,336
To find the units digit of (27^{27}), we can look at the units digit of (27), which is (7). We then need to find the units digit of (7^{27}). The units digits of the powers of (7) cycle every four terms: (7^1 = 7), (7^2 = 49) (units digit (9)), (7^3 = 343) (units digit (3)), and (7^4 = 2401) (units digit (1)). Since (27 \mod 4 = 3), the units digit of (7^{27}) is the same as that of (7^3), which is (3). Thus, the units digit of (27^{27}) is (3).