answersLogoWhite

0


Best Answer

If it has those roots, the simplest one will have (x+2),(x-2),(x+3). So multiply those three together. =(x^2-4)(x+3)=x^3+3x^2-4x-12.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What polynomial equation has the roots -2 2 -3?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

In a cubic polynomial 2xxx-5xx-14x 8 find the sum of the zeros?

2x^3 - 5x^2 - 14x + 8 Let P(x) represents the cubic polynomial. We can find the sum of x-values which make P(x) = 0, (the sum of the roots of the equation) P(x) = 2x^3 - 5x^2 - 14x + 8 P(x) = 0 2x^3 - 5x^2 - 14x + 8 = 0 Since the degree of this polynomial is odd, then the sum of the roots is -[a(n - 1)/an], where a(n-1) is -5 and an is 2. So we have, -[a(n - 1)/an] = -(-5/2) = 5/2 Thus the sum of the roots is 5/2.


How many roots does a quadratic equation in one variable have?

A quadratic equation has two roots. They may be similar or dissimilar. As the highest power of a quadratic equation is 2 , there are 2 roots. Similarly, in the cubic equation, the highest power is 3, so it has three equal or unequal roots. So the highest power of an equation is the answer to the no of roots of that particular equation.


A quadratic polynomial is a third-degree polynomial?

No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).


What is the least degree of a polynomial with the roots 3 0 -3 and 1?

The polynomial P(x)=(x-3)(x-0)(x+3)(x-1) is of the fourth degree.


If 3 - 2i is a solution to a polynomial equation is the complex conjugate 3 plus 2i also a solution yes or no?

Not necessarily, take for example the equation x^2=5-12i. Then, 3-2i satisfies the equation. However, 3+2i does not because (3+2i)^2 = 5+12i.

Related questions

What 2 values of x are roots of the polynomial x2 plus 3x-5?

You can find the roots with the quadratic equation (a = 1, b = 3, c = -5).


At most how many unique roots will a third-degree polynomial have?

A third-degree equation has, at most, three roots. A fourth-degree polynomial has, at most, four roots. APEX 2021


What is the difference between a polynomial and a quadratic equation?

Oh, dude, it's like this: all quadratic equations are polynomials, but not all polynomials are quadratic equations. A quadratic equation is a specific type of polynomial that has a degree of 2, meaning it has a highest power of x^2. So, like, all squares are rectangles, but not all rectangles are squares, you know what I mean?


Which two values of x are roots of the polynomial x2 plus 3x - 5?

To find the roots of the polynomial (x^2 + 3x - 5), we need to set the polynomial equal to zero and solve for x. So, (x^2 + 3x - 5 = 0). To solve this quadratic equation, we can use the quadratic formula: (x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}), where a = 1, b = 3, and c = -5. Plugging these values into the formula, we get (x = \frac{-3 \pm \sqrt{3^2 - 41(-5)}}{2*1}), which simplifies to (x = \frac{-3 \pm \sqrt{29}}{2}). Therefore, the two values of x that are roots of the polynomial are (x = \frac{-3 + \sqrt{29}}{2}) and (x = \frac{-3 - \sqrt{29}}{2}).


What are the roots of the polynomial x2 plus 3x plus 5?

You can find the roots with the quadratic equation (a = 1, b = 3, c = -5).


How many unique roots will a third degree polynomial function have?

It can have 1, 2 or 3 unique roots.


Are there only 3 degree's in a polynomial equation?

No. A polynomial can have as many degrees as you like.


In a cubic polynomial 2xxx-5xx-14x 8 find the sum of the zeros?

2x^3 - 5x^2 - 14x + 8 Let P(x) represents the cubic polynomial. We can find the sum of x-values which make P(x) = 0, (the sum of the roots of the equation) P(x) = 2x^3 - 5x^2 - 14x + 8 P(x) = 0 2x^3 - 5x^2 - 14x + 8 = 0 Since the degree of this polynomial is odd, then the sum of the roots is -[a(n - 1)/an], where a(n-1) is -5 and an is 2. So we have, -[a(n - 1)/an] = -(-5/2) = 5/2 Thus the sum of the roots is 5/2.


What is the difference between a polynomial and an equation?

Equations will have an equals sign. Such as: x + 3 = 2 Polynomials will not. Such as: 2x + 3


How many roots does a quadratic equation in one variable have?

A quadratic equation has two roots. They may be similar or dissimilar. As the highest power of a quadratic equation is 2 , there are 2 roots. Similarly, in the cubic equation, the highest power is 3, so it has three equal or unequal roots. So the highest power of an equation is the answer to the no of roots of that particular equation.


A quadratic polynomial is a third-degree polynomial?

No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).


Which equation has roots of 3 and radical 2?

(x - 3) (x - square root of 2) = 0