answersLogoWhite

0


Best Answer

See the answer shown there!

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Which is closest to the circumference of circle O shown?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What is the segment OP of a circle?

if O is the center of the circle and P is on its circumference, then OP is a radius


Why is it that a quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary?

Because of one of the Circle Theorems that states that the angle subtended by any arc at the centre of the circle is half that at the circumference. A rough version of the proof follows: Suppose the quadrilateral ABCD is inscribed in a circle with centre O. Join AO and CO. This partitions the circumference into two arcs - both AC but going around different sides of the centre. One of the arcs AC, subtends angle B at the circumference and suppose the angle subtended by the same arc at O is X. Then 2B = X The other arc AC subtends angle D at the circumference and suppose the angle subtended by the same arc at O is Y. Then 2D = Y So 2B + 2D = X + Y But X + Y = 360 degrees. So B + D = 180 that is, B and D are supplementary. And then, since A+B+C+D = 360, A + C = 180. The converse can be proved similarly.


What is the locus of the centers of circles that are tangent to a given circle O at a given point A on circle O?

Join the centre of the circle O and the point A .Extend it to both sides to form a line.This is the required locus


If a circle is inscribed in a square what is true?

all the points in the inscribed circle are also in the bigger circle. If all the points in the outside circle are the set O ... and all the points in the inner circle are the set I... Then I is a subset of O, just like a venn diagram


What kind of number is pie?

the number is spelled pi, not pie. Pie is a food, pi is different.Pi is an irrational number (number which doesn't end) which is the ratio to the circumference o f a circle to its diameter.Some beginning numbers of pi are: 3.14159265358979323846264338327950288419716939937510...and so on

Related questions

What is the segment OP of a circle?

if O is the center of the circle and P is on its circumference, then OP is a radius


What does radius mean in math terms?

A line segment extending from the center of a circle or sphere t o the circumference or bounding surface.


How do you find degrees on a circumfince?

I presume you mean the circumference of a circle. If P and Q are two points on the circumference of a circle with center O, the number of degrees in the arc PQ is defined as the number of degrees in the angle POQ.


How much longer is the perimeter of a square than the circumference of a circle if the circumference of the circle is approximately 11 centimeters and the diameter is 3.5 centimeters?

O = pi*D cm = 3,14 * 3,5 cm = 11 cm The circumference from the inside square is Li = 4*(Root from (2*(D/2)square))= 4*Root 2,47 =9,89 cm. The circumference from the outside square is Lo = 4* D = 14 cm.


Why is it that a quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary?

Because of one of the Circle Theorems that states that the angle subtended by any arc at the centre of the circle is half that at the circumference. A rough version of the proof follows: Suppose the quadrilateral ABCD is inscribed in a circle with centre O. Join AO and CO. This partitions the circumference into two arcs - both AC but going around different sides of the centre. One of the arcs AC, subtends angle B at the circumference and suppose the angle subtended by the same arc at O is X. Then 2B = X The other arc AC subtends angle D at the circumference and suppose the angle subtended by the same arc at O is Y. Then 2D = Y So 2B + 2D = X + Y But X + Y = 360 degrees. So B + D = 180 that is, B and D are supplementary. And then, since A+B+C+D = 360, A + C = 180. The converse can be proved similarly.


What is another name for a circle?

an O another name for a circle is an O and a spherical


Half a circle plus circle plus half a circle plus a half a circle plus circle plus 90' angle plus a guess wat it is?

C-O-C-O-C-O-L-A


What are the procedures in constructing hexagon?

It depends on what instruments you have or are allowed to use. That is NOT specified and it is assumed that a compass and ruler are available for use. To construct a hexagon with sides of length L, draw a circle with centre at a point O and radius L. Pick any point on the circumference of the circle (B). Draw two arcs using the compass with the same radius as before so as to intersect the circumference of the circle at two other points, A and C - one on either side of B. Let the line AO meet the circumference on the far side of the circle at D. Similarly, BO at E and CO at F. Then ABCDEFA is a hexagon with sides of length L.


Is a circle a boy?

Well an o is a boy and a circle looks like a o... so its a boy!!!


How do you draw a tangent to a circle from a point on its circumference?

Short instructions:Construct the diameter of the circle at the tangent point Construct a line at right angles to the diameter at the tangent point. this is a tangent to the circle at that point.Detailed instructions with compass and straight edge:Given: circle C with a point T on the circumference Sought: Tangent to C at TFind the center circle CPlace the needle of the compass on the (circumference of) circle C (anywhere), draw a circle [circle 1] (I think circle 1 has to be smaller than twice the diameter of circle C).Without changing the compass size, place the needle of the compass on the intersection of circles C and circle 1, draw a circle (circle 2)Without changing the compass size, place the needle of the compass on the other intersection of circles C and circle 1, draw a circle (circle 3)Connect the intersections of circle 1 and circle 2 (one is outside and one inside circle A) this we call [ line 1]Connect the intersections of circle 2 and circle 3 (also here one is outside and one inside C) [line 2]The intersection of line 1 and Line 2 is [O]. This is the center of circle CDraw a line [line 3] from [O] through [T] and beyondConstruct the diameter of the circle at [T] (the point for the tangent) and extend it beyond the circumference of circle C With your compass needle at [T] mark off equal distances on [line 3] inside and outside circle C. We call these points [4] & [5]Increase the compass size somewhat and with the needle at [4] draw a circle [circle 4]Without changing the compass draw [circle 5] centered on [5]Construct a line perpendicular to line 3 at [T]The line through the intersections of circle 4 and circle 5 is the sought tangent at [T]Note: although the instructions say "draw a circle" often it is sufficient to just mark a short arc of the circle at the appropriate place. This will keep the drawing cleaner and easier to interpret.


What you get when you divide the diameter of a jack-o'-lanterns by its circumference?

3.14159


What do you get when you divide the circumference of a jack-o'-lanterns by its diameter?

Pi.