3
The points at which the parabola intersects the x axis are 3-sqrt(10)/2 and 3+sqrt(10)/2. The X position of the vertex is in the middle, at 3. The y position, from there, is simply found by substituting 2 for x in the equation. As a result, the vertex is at (3, 5).
7
the equation of a parabola is: y = a(x-h)^2 + k *h and k are the x and y intercepts of the vertex respectively * x and y are the coordinates of a known point the curve passes though * solve for a, then plug that a value back into the equation of the parabola with out the coordinates of the known point so the equation of the curve with the vertex at (0,3) passing through the point (9,0) would be.. 0 = a (9-0)^2 + 3 = 0 = a (81) + 3 = -3/81 = a so the equation for the curve would be y = -(3/81)x^2 + 3
So you need something like this: y = a*(x - 4)² + 3. This will make the vertex be at (4,3). Then it looks like you have another point on the parabola (3,5). Plug that in and solve for a. 5 = a*(3-4)² + 3. This becomes 5 = a + 3, so a=2, then the equation is: y = 2*(x - 4)² + 3
3
The vertex of this parabola is at -2 -3 When the y-value is -2 the x-value is -5. The coefficient of the squared term in the parabola's equation is -3.
The coordinates will be at the point of the turn the parabola which is its vertex.
2
-5
please help
A parabola with vertex (h, k) has equation of the form: y = a(x - h)² + k → vertex (k, h) = (-2, -3), and a point on it is (-1, -5) → -5 = a(-1 - -2)² + -3 → -5 = a(1)² - 3 → -5 = a - 3 → a = -2 → The coefficient of the x² term is -2.
Y=a(x-h)+k is the vertex formula. Since the vertex is at (-2,-3) this parabola has the equation: y=a(x+2)^2-3 We can plug in x=-1 but we really need to know a, to solve for y. ( we can solve it, but we will have an a in the solution)
7
For a parabola with an axis of symmetry parallel to the x-axis, the equation of a parabola is given by: (y - k)² = 4p(x - h) Where the vertex is at (h, k), and the distance between the focus and the vertex is p (which can be calculated as p = x_focus - x_vertex). For the parabola with vertex (1, -3) and focus (2, -3) this gives: h = 1 k = -3 p = 2 - 1 = 1 → parabola is: (y - -3)² = 4×1(x - 1) → (y + 3)² = 4(x - 1) This can be expanded to: 4x = y² + 6y + 13 or x = (1/4)y² + (3/2)y + (13/4)
The points at which the parabola intersects the x axis are 3-sqrt(10)/2 and 3+sqrt(10)/2. The X position of the vertex is in the middle, at 3. The y position, from there, is simply found by substituting 2 for x in the equation. As a result, the vertex is at (3, 5).
-3