-1
3
To find the equation of a parabola with vertex at ((-3, 0)) that passes through the point ((3, 18)), we can use the vertex form of a parabola, (y = a(x + 3)^2). To determine the value of (a), substitute the point ((3, 18)) into the equation: [ 18 = a(3 + 3)^2 \implies 18 = a(6)^2 \implies 18 = 36a \implies a = \frac{1}{2}. ] Thus, the equation of the parabola is (y = \frac{1}{2}(x + 3)^2).
The equation of a parabola with vertex at (0, 0) and a directrix of ( x = -3 ) opens to the right, as the directrix is a vertical line. The distance from the vertex to the directrix is 3 units. The standard form of the equation for a horizontally-opening parabola is given by ( y^2 = 4px ), where ( p ) is the distance from the vertex to the directrix. Therefore, with ( p = 3 ), the equation is ( y^2 = 12x ).
To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).
To find the vertex of the parabola given by the equation ( y = x^2 + 2x - 3 ), we can use the vertex formula ( x = -\frac{b}{2a} ). Here, ( a = 1 ) and ( b = 2 ), so ( x = -\frac{2}{2 \cdot 1} = -1 ). Substituting ( x = -1 ) back into the equation gives ( y = (-1)^2 + 2(-1) - 3 = -4 ). Therefore, the coordinates of the vertex are ( (-1, -4) ).
3
The vertex of this parabola is at -2 -3 When the y-value is -2 the x-value is -5. The coefficient of the squared term in the parabola's equation is -3.
2
To determine the equation of a parabola with a vertex at the point (5, -3), we can use the vertex form of a parabola's equation: (y = a(x - h)^2 + k), where (h, k) is the vertex. Substituting in the vertex coordinates, we have (y = a(x - 5)^2 - 3). The value of "a" will determine the direction and width of the parabola, but any equation in this form with varying "a" values could represent the parabola.
To find the equation of a parabola with vertex at ((-3, 0)) that passes through the point ((3, 18)), we can use the vertex form of a parabola, (y = a(x + 3)^2). To determine the value of (a), substitute the point ((3, 18)) into the equation: [ 18 = a(3 + 3)^2 \implies 18 = a(6)^2 \implies 18 = 36a \implies a = \frac{1}{2}. ] Thus, the equation of the parabola is (y = \frac{1}{2}(x + 3)^2).
The coordinates will be at the point of the turn the parabola which is its vertex.
-5
please help
A parabola with vertex (h, k) has equation of the form: y = a(x - h)² + k → vertex (k, h) = (-2, -3), and a point on it is (-1, -5) → -5 = a(-1 - -2)² + -3 → -5 = a(1)² - 3 → -5 = a - 3 → a = -2 → The coefficient of the x² term is -2.
Y=a(x-h)+k is the vertex formula. Since the vertex is at (-2,-3) this parabola has the equation: y=a(x+2)^2-3 We can plug in x=-1 but we really need to know a, to solve for y. ( we can solve it, but we will have an a in the solution)
To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).
7