what is the image of the point (-2,7) after a rotation of 180 counterclockwise about the origin?
To find the image of the point (4, 3) after a 90-degree rotation counterclockwise about the origin, you can use the transformation formula for rotation. The new coordinates will be (-y, x), which means the image of the point (4, 3) will be (-3, 4).
The answer will depend on whether the rotation is clockwise or counterclockwise.
The answer will depend on whether the rotation is clockwise or counterclockwise.
What is the image of point (3, 5) if the rotation is
A rotation of 270 degrees counterclockwise is a transformation that turns a figure around a fixed point by 270 degrees in the counterclockwise direction. This rotation can be visualized as a quarter turn in the counterclockwise direction. It is equivalent to rotating the figure three-fourths of a full revolution counterclockwise.
To find the image of ABC for a 180-degree counterclockwise rotation about point P, we would reflect each point of the triangle across the line passing through P. The resulting image of ABC would be a congruent triangle with its vertices in opposite positions relative to the original triangle.
Both will end up on the same place. Using a compass rose as an example: 270 clockwise will point to the west. 90 counterclockwise will also point west.
All rotations, other than those of 180 degrees should be further qualified as being clockwise or counter-clockwise. This one is not and I am assuming that the direction of rotation is the same as measurement of polar angles. Also, a rotation is not properly defined unless the centre of rotation is specified. I am assuming that the centre of rotation is the origin. Without these two assumptions any point in the plane can be the image. With the assumptions, for which there is no valid reason, the image is (3, -4).
A rotation is a transformations when a figure is turned around a point called the point of rotation. The image has the same lengths and angle measures, and differs only in position. Rotations that are counterclockwise are rotations of positive angles. All rotations are assumed to be about the origin. R90 deg (x, y) = (-y, x) R180 deg (x, y) = (-x, -y) R270 deg (x, y) = (y, -x) R360 deg (x, y) = (x, y)
The answer will depend on where the centre of rotation is. Since that it not specified, the image could by anywhere.
The image is (-5, 3)
The answer depends on the centre of rotation. Since this is not given, there can be no answer.