Assuming you are asking about the natural logarithms (base e):log (-1) = i x pithereforelog (log -1) = log (i x pi) = log i + log pi = (pi/2)i + log pi which is approximately 1.14472989 + 1.57079633 i
By Euler's formula, e^ix = cosx + i*sinx Taking natural logarithms, ix = ln(cosx + i*sinx) When x = pi/2, i*pi/2 = ln(i) But ln(i) = log(i)/log(e) where log represents logarithms to base 10. That is, i*pi/2 = log(i)/log(e) And therefore log(i) = i*pi/2*log(e) = i*0.682188 or 0.682*i to three decimal places.
The first of an infinite series of solutions is: log10(-2.4969)=ln(-2.4969)/ln(10)=ln(2.4969)/ln(10) +PI*i/ln(10) = .397 + 1.364*i There are an infinite number of additional solutions of the form: .397 + 1.364*i +2*PI*k/ln(10) where k is any integer greater than 0. I got this number by using the change of base identity and a common, complex log identity, neither of which I'm deriving. If you haven't been taught it yet, i = sqrt(-1).
It is 100*pi : 1 or approx 314.159:1
circumference = 2*pi*100
Assuming you are asking about the natural logarithms (base e):log (-1) = i x pithereforelog (log -1) = log (i x pi) = log i + log pi = (pi/2)i + log pi which is approximately 1.14472989 + 1.57079633 i
By Euler's formula, e^ix = cosx + i*sinx Taking natural logarithms, ix = ln(cosx + i*sinx) When x = pi/2, i*pi/2 = ln(i) But ln(i) = log(i)/log(e) where log represents logarithms to base 10. That is, i*pi/2 = log(i)/log(e) And therefore log(i) = i*pi/2*log(e) = i*0.682188 or 0.682*i to three decimal places.
[ln(2) + i*pi]/ln(10) if you are referring to log as a base 10 log. ln refers to thenatural logarithm (log base e)The log of any negative number is imaginary. The formula above is derived fromthe relationship:-1 = ei*pisince you want log of -2, multiply both sides by 2-2 = 2*ei*pitaking natural logarithm of both sides: ln( -2) = ln(2*ei*pi ) = ln(2) + ln(ei*pi )which reduces to ln(2) + i*piIf you want log10 then divide both sides by ln(10)So log10(-2) = ln(-2)/ln(10) = [[ln(2) + i*pi]/ln(10)x = log (-2) = log10(-2)10x = -2Think about the smallest possible number you can put in for x.10-∞ = ?10-∞ = 1/10∞10∞ = ∞1/∞ = ?1/∞ = 0It is impossible to ever get 0 or a negative number because you will never reach infinity.log(-2) is undefined
LN is typically the syntax used to represent the natural logarithm function. Although some programming languages and computer applications use LOG to represent this function, most calculators and math textbooks use LN. In use, it would look like this:y=ln(x)Which reads as "y equals the natural logarithm of x".The natural logarithm is a logarithm that has a base of e, Euler's number, which is a mathematical constant represented by a lowercase italic e (similar to how pi is a constant represented by a symbol). Euler's number is approximately equal to 2.718281, although it continues on far past six decimal places.Functionally, the natural logarithm can be used to solve exponential equations and is very useful in differentiating functions that are raised to another function. Typically, when the solution to an equation calls for the trivial use of a logarithm (that is the logarithm is only being used as a tool to rewrite the equation), either the natural logarithm or the common logarithm (base 10) is used.
Pi minus 2, Square root of 3, fourth root of 8, Natural Log of 7, e (base of natural logs), pi squared,.... There are an infinite number of them.
The square root of any number which is not a perfect square;The cube root of any number which is not a perfect cube;Pi, the circular constant.e, the natural logarithm base number.
i * pi / 2.
It equals 0.4971
In base pi yes, it is 10 in base pi.
xlog10 = x This is a simple rule of logs, because log(base10)10 = 1. Any value multiplied by one equals itself. So pi*log10 = pi(1) = pi.
V = pi*r2*h so h = V/(pi*r2) = 6903/(pi*100) = 21.97 feet
The first of an infinite series of solutions is: log10(-2.4969)=ln(-2.4969)/ln(10)=ln(2.4969)/ln(10) +PI*i/ln(10) = .397 + 1.364*i There are an infinite number of additional solutions of the form: .397 + 1.364*i +2*PI*k/ln(10) where k is any integer greater than 0. I got this number by using the change of base identity and a common, complex log identity, neither of which I'm deriving. If you haven't been taught it yet, i = sqrt(-1).