The answe is 27x^4 + 6x^3 - 61x^2 - 68x - 42
if you rearrange it, it becomes 4y + 8 = 3x2 -2x +1 4y = 3x2 -2x -7 y= (3x2 -2x -7)/4 which is a parabola
(x3 + 3x2 - 2x + 7)/(x + 1) = x2 + 2x - 4 + 11/(x + 1)(multiply x + 1 by x2, and subtract the product from the dividend)1. x2(x + 1) = x3 + x22. (x3 + 3x2 - 2x + 7) - (x3 + x2) = x3 + 3x2 - 2x + 7 - x3 - x2 = 2x2 - 2x + 7(multiply x + 1 by 2x, and subtract the product from 2x2 - 2x + 7)1. 2x(x + 1) = 2x2 + 2x2. (2x2 - 2x + 7) - (2x2 + 2x) = 2x2 - 2x + 7 - 2x2 - 2x = -4x + 7(multiply x + 1 by -4, and subtract the product from -4x + 7)1. -4(x + 1) = -4x - 42. -4x + 7 - (-4x - 4) = -4x + 7 + 4x + 4 = 11(remainder)
3x2 + 2x - 21 = (3x - 7) (x + 3)
x^5+2x^4+4x^2+2x-3
2x2 + x2 = 3x2
if you rearrange it, it becomes 4y + 8 = 3x2 -2x +1 4y = 3x2 -2x -7 y= (3x2 -2x -7)/4 which is a parabola
3x2 + 2x + 3 + x2 + x + 1 = 4x 2+ 3x + 4
If it is 3x2 + 4 = 2x + 4, then you can subtract 4 from both sides, and get 3x2 = 2x, and then x = 2/3
(x3 + 3x2 - 2x + 7)/(x + 1) = x2 + 2x - 4 + 11/(x + 1)(multiply x + 1 by x2, and subtract the product from the dividend)1. x2(x + 1) = x3 + x22. (x3 + 3x2 - 2x + 7) - (x3 + x2) = x3 + 3x2 - 2x + 7 - x3 - x2 = 2x2 - 2x + 7(multiply x + 1 by 2x, and subtract the product from 2x2 - 2x + 7)1. 2x(x + 1) = 2x2 + 2x2. (2x2 - 2x + 7) - (2x2 + 2x) = 2x2 - 2x + 7 - 2x2 - 2x = -4x + 7(multiply x + 1 by -4, and subtract the product from -4x + 7)1. -4(x + 1) = -4x - 42. -4x + 7 - (-4x - 4) = -4x + 7 + 4x + 4 = 11(remainder)
3x2 + 2x - 21 = (3x - 7) (x + 3)
2x+3x2 = x (2+3x)
If the original is 2x + 3x2 + 6 + 5x3, you should rearrange the terms in order of exponent:5x3 + 3x2 + 2x + 6
That depends on whether or not 2x is a plus or a minus
3x2 + 2x - 8 = 3x2 + 6x - 4x - 8 = 3x(x + 2) - 4(x + 2) = (x + 2)(3x - 4).
x^5+2x^4+4x^2+2x-3
2x2 + x2 = 3x2
3(x2 - 2x + 3)