answersLogoWhite

0

Scores on the SAT form a normal distribution with a mean of µ = 500 with σ = 100. What is the probability that a randomly selected college applicant will have a score greater than 640?

What else can I help you with?

Related Questions

What proportion of a normal distribution corresponds to z-scores greater than plus 1.04?

To find the proportion of a normal distribution corresponding to z-scores greater than +1.04, you can use the standard normal distribution table or a calculator. The area to the left of z = 1.04 is approximately 0.8508. Therefore, the proportion of the distribution that corresponds to z-scores greater than +1.04 is 1 - 0.8508, which is approximately 0.1492, or 14.92%.


What proportion of a normal distribution corresponds to z scores greater than 1.04?

In a normal distribution, approximately 76.4% of the data falls below a z score of 1.04. Therefore, the proportion of the distribution that corresponds to z scores greater than 1.04 is about 23.6%. This can be found using standard normal distribution tables or calculators.


What percentage of scores in a normal distribution would fall between z-scores of 1 and -2?

3


How do you find normal distribution of z-scores?

z-scores are distributed according to the standard normal distribution. That is, with the parameters: mean 0 and variance 1.


How would you characterize the distribution of scores in a normal distribution?

They are said to be Normally distributed.


What proportion of the scores in a normal distribution is approximately between z -1.16 and z 1.16?

Between z = -1.16 and z = 1.16 is approx 0.7540 (or 75.40 %). Which means ¾ (0.75 or 75%) of the normal distribution lies between approximately -1.16 and 1.16 standard deviations from the mean.


When to you use a z scores or t scores?

If the distribution is Gaussian (or Normal) use z-scores. If it is Student's t, then use t-scores.


Intelligence scores follow what kind of distribution?

The IQs of a large enough population can be modeled with a Normal Distribution


How do you to get the probability in normal distribution?

You calculate the z-scores and then use published tables.


For a normal distribution what z-score value separates the lowest 10 percent of the scores from the rest of the distribution?

-1.28


What proportion of a normal distribution is located between the two z scores -1.25 and 1.25?

Approx 78.88 % Normal distribution tables give the area under the normal curve between the mean where z = 0 and the given number of standard deviations (z value) to its right; negative z values are to the left of the mean. Looking up z = 1.25 gives 0.3944 (using 4 figure tables). → area between -1.25 and 1.25 is 0.3944 + 0.3944 = 0.7888 → the proportion of the normal distribution between z = -1.25 and z = 1.25 is (approx) 78.88 %


What kind of graph would you use to show the scores?

When putting the scores in, you use the normal distribution graph, which is the best start.