50%, the Father's contribution decides the sex of a child.
There is no simple answer.First of all, the probability of boys is 0.517 not0.5.Second, the probabilities are not independent.If you choose to ignore these important facts, then the answer is 2/3.
In a family with four children, the probability of having four boys is 1 in 16.
There is not enough information on the propensity for the parents to have a child of either gender and so it is necessary to assume that the probability of the gender of the next child is independent of the genders of preceding children. In that case the probability of the next child being a girl is 1/2.There is not enough information on the propensity for the parents to have a child of either gender and so it is necessary to assume that the probability of the gender of the next child is independent of the genders of preceding children. In that case the probability of the next child being a girl is 1/2.There is not enough information on the propensity for the parents to have a child of either gender and so it is necessary to assume that the probability of the gender of the next child is independent of the genders of preceding children. In that case the probability of the next child being a girl is 1/2.There is not enough information on the propensity for the parents to have a child of either gender and so it is necessary to assume that the probability of the gender of the next child is independent of the genders of preceding children. In that case the probability of the next child being a girl is 1/2.
1/8
1/4
There is no simple answer.First of all, the probability of boys is 0.517 not0.5.Second, the probabilities are not independent.If you choose to ignore these important facts, then the answer is 2/3.
In a family with four children, the probability of having four boys is 1 in 16.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of 13 boys in a family with 13 children is approx 0.00019.
There is not enough information on the propensity for the parents to have a child of either gender and so it is necessary to assume that the probability of the gender of the next child is independent of the genders of preceding children. In that case the probability of the next child being a girl is 1/2.There is not enough information on the propensity for the parents to have a child of either gender and so it is necessary to assume that the probability of the gender of the next child is independent of the genders of preceding children. In that case the probability of the next child being a girl is 1/2.There is not enough information on the propensity for the parents to have a child of either gender and so it is necessary to assume that the probability of the gender of the next child is independent of the genders of preceding children. In that case the probability of the next child being a girl is 1/2.There is not enough information on the propensity for the parents to have a child of either gender and so it is necessary to assume that the probability of the gender of the next child is independent of the genders of preceding children. In that case the probability of the next child being a girl is 1/2.
It depends on the context: if you select a child at random from a girls' school, the probability is 0, while if it is at a boys' school it is 1!
1/8
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability that all three children are boys is approx 0.1381
ALL the children are boys, so 1/2 half are boys and so is the other half.
6 out of 9.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of the other two being boys is 0.2672.
1/4
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of 3 boys out of 13 is 0.0273.