No. But a small sample will be a less accurate predictor of the standard deviation of the population due to its size. Another way of saying this: Small samples have more variability of results, sometimes estimates are too high and other times too low. As the sample size gets larger, there's a better chance that your sample will be close to the actual standard deviation of the population.
Let sigma = standard deviation. Standard error (of the sample mean) = sigma / square root of (n), where n is the sample size. Since you are dividing the standard deviation by a positive number greater than 1, the standard error is always smaller than the standard deviation.
No.
Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller.
The more precise a result, the smaller will be the standard deviation of the data the result is based upon.
It is inversely proportional; a larger standard deviation produces a small kurtosis (smaller peak, more spread out data) and a smaller standard deviation produces a larger kurtosis (larger peak, data more centrally located).
The smaller the standard deviation, the closer together the data is. A standard deviation of 0 tells you that every number is the same.
Let sigma = standard deviation. Standard error (of the sample mean) = sigma / square root of (n), where n is the sample size. Since you are dividing the standard deviation by a positive number greater than 1, the standard error is always smaller than the standard deviation.
No.
Standard deviation in statistics refers to how much deviation there is from the average or mean value. Sample deviation refers to the data that was collected from a smaller pool than the population.
Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller. Because the standard deviation is a measure of the spread in scores. As individuals score more similarly, the spread gets smaller.
The more precise a result, the smaller will be the standard deviation of the data the result is based upon.
In the same way that you calculate mean and median that are greater than the standard deviation!
An acceptable standard deviation depends entirely on the study and person asking for the study. The smaller the standard deviation, the more acceptable it will be because the less likely there are to be errors.
The absolute value of the standard score becomes smaller.
No.
Yes. If the variance is less than 1, the standard deviation will be greater that the variance. For example, if the variance is 0.5, the standard deviation is sqrt(0.5) or 0.707.
Yes, that's true. In a normal distribution, a smaller standard deviation indicates that the data points are closer to the mean, resulting in a taller and narrower curve. Conversely, a larger standard deviation leads to a wider and shorter curve, reflecting more variability in the data. Thus, the standard deviation directly affects the shape of the normal distribution graph.