answersLogoWhite

0


Best Answer

If the probability distribution function for the random variable X is f(x), then

first calculate E(X) = integral of x*f(x)dx over the whole real line.

Noxt calculate E(X2) = integral of x2*f(x)dx over the whole real line.

Then Variance(X) = E(X2) - [E(X)]2

and finally, SD(X) = sqrt[Variance(X)].

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you find the standard deviation for the given probability distribution?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What is the relationship between standard deviation and accuracy?

It depends what you're asking. The question is extremely unclear. Accuracy of what exactly? Even in the realm of statistics an entire book could be written to address such an ambiguous question (to answer a myriad of possible questions). If you simply are asking what the relationship between the probability that something will occur given the know distribution of outcomes (such as a normal distribution), the mean of that that distribution, and the the standard deviation, then the standard deviation as a represents the spread of the curve of probability. This means that if you had a cure where 0 was the mean, and 3 was the standard deviation, the likelihood of observing a value of 12 (or -12) would be likely inaccurate if that was your prediction. However, if you had a mean of 0 and a standard deviation of 100, the likelihood of observing of a 12 (or -12) would be quite likely. This is simply because the standard deviation provides a simple representation of the horizontal spread of probability on the x-axis.


What are importance of mean and standard deviation in the use of normal distribution?

For data sets having a normal distribution, the following properties depend on the mean and the standard deviation. This is known as the Empirical rule. About 68% of all values fall within 1 standard deviation of the mean About 95% of all values fall within 2 standard deviation of the mean About 99.7% of all values fall within 3 standard deviation of the mean. So given any value and given the mean and standard deviation, one can say right away where that value is compared to 60, 95 and 99 percent of the other values. The mean of the any distribution is a measure of centrality, but in case of the normal distribution, it is equal to the mode and median of the distribtion. The standard deviation is a measure of data dispersion or variability. In the case of the normal distribution, the mean and the standard deviation are the two parameters of the distribution, therefore they completely define the distribution. See: http://en.wikipedia.org/wiki/Normal_distribution


In a standard normal distribution what is the value of the mean and standard deviation?

idk about normal distribution but for Mean "M" = (overall sum of "x") / "n" frequency distribution: 'M' = Overall sum of (' x ' * ' f ') / overall sum of ( ' f ' ) M = Mean x = Mid Point f = frequiency n = number of variables ALL FOR STANDARD DEVIATION * * * * * A general Normal distribution is usually described in terms of its parameters, and given as N(mu, sigma2) where mu is the mean and sigma is the standard deviation. The STANDARD Normal distribution is the N(0, 1) distribution, that is, it has mean = 0 and variance (or standard deviation) = 1.


What is the meaning of random variable in probability distribution?

It is a variable that can take a number of different values. The probability that it takes a value in any given range is determined by a random process and the value of that probability is given by the probability distribution function.It is a variable that can take a number of different values. The probability that it takes a value in any given range is determined by a random process and the value of that probability is given by the probability distribution function.It is a variable that can take a number of different values. The probability that it takes a value in any given range is determined by a random process and the value of that probability is given by the probability distribution function.It is a variable that can take a number of different values. The probability that it takes a value in any given range is determined by a random process and the value of that probability is given by the probability distribution function.


What is the difference between population and sample distribution?

Sampling distribution is the probability distribution of a given sample statistic. For example, the sample mean. We could take many samples of size k and look at the mean of each of those. The means would form a distribution and that distribution has a mean, a variance and standard deviation. Now the population only has one mean, so we can't do this. Population distribution can refer to how some quality of the population is distributed among the population.

Related questions

How do you calculate probability given mean and standard deviation?

The mean and standard deviation do not, by themselves, provide enough information to calculate probability. You also need to know the distribution of the variable in question.


Poisson distribution the mean and standard deviation?

The Poisson distribution is a discrete distribution, with random variable k, related to the number events. The discrete probability function (probability mass function) is given as: f(k; L) where L (lambda) is the mean and square root of lambda is the standard deviation, as given in the link below: http://en.wikipedia.org/wiki/Poisson_distribution


What is the relationship between standard deviation and accuracy?

It depends what you're asking. The question is extremely unclear. Accuracy of what exactly? Even in the realm of statistics an entire book could be written to address such an ambiguous question (to answer a myriad of possible questions). If you simply are asking what the relationship between the probability that something will occur given the know distribution of outcomes (such as a normal distribution), the mean of that that distribution, and the the standard deviation, then the standard deviation as a represents the spread of the curve of probability. This means that if you had a cure where 0 was the mean, and 3 was the standard deviation, the likelihood of observing a value of 12 (or -12) would be likely inaccurate if that was your prediction. However, if you had a mean of 0 and a standard deviation of 100, the likelihood of observing of a 12 (or -12) would be quite likely. This is simply because the standard deviation provides a simple representation of the horizontal spread of probability on the x-axis.


What are importance of mean and standard deviation in the use of normal distribution?

For data sets having a normal distribution, the following properties depend on the mean and the standard deviation. This is known as the Empirical rule. About 68% of all values fall within 1 standard deviation of the mean About 95% of all values fall within 2 standard deviation of the mean About 99.7% of all values fall within 3 standard deviation of the mean. So given any value and given the mean and standard deviation, one can say right away where that value is compared to 60, 95 and 99 percent of the other values. The mean of the any distribution is a measure of centrality, but in case of the normal distribution, it is equal to the mode and median of the distribtion. The standard deviation is a measure of data dispersion or variability. In the case of the normal distribution, the mean and the standard deviation are the two parameters of the distribution, therefore they completely define the distribution. See: http://en.wikipedia.org/wiki/Normal_distribution


In a standard normal distribution what is the value of the mean and standard deviation?

idk about normal distribution but for Mean "M" = (overall sum of "x") / "n" frequency distribution: 'M' = Overall sum of (' x ' * ' f ') / overall sum of ( ' f ' ) M = Mean x = Mid Point f = frequiency n = number of variables ALL FOR STANDARD DEVIATION * * * * * A general Normal distribution is usually described in terms of its parameters, and given as N(mu, sigma2) where mu is the mean and sigma is the standard deviation. The STANDARD Normal distribution is the N(0, 1) distribution, that is, it has mean = 0 and variance (or standard deviation) = 1.


How do you calculate variance given standard deviation?

Square the standard deviation and you will have the variance.


Given a standardized normal distribution with a mean of 0 and a deviation of 1 what is the probability that Z is less than 1.51?

From the related link, you can read directly the probability that Z is less than 1.51 is 0.9345.


How do you find the interquartile range when given the mean and standard deviation?

In general you cannot. You will need to know more about the distribution of the variable - you cannot assume that the distribution is uniform or Normal.


What is the meaning of random variable in probability distribution?

It is a variable that can take a number of different values. The probability that it takes a value in any given range is determined by a random process and the value of that probability is given by the probability distribution function.It is a variable that can take a number of different values. The probability that it takes a value in any given range is determined by a random process and the value of that probability is given by the probability distribution function.It is a variable that can take a number of different values. The probability that it takes a value in any given range is determined by a random process and the value of that probability is given by the probability distribution function.It is a variable that can take a number of different values. The probability that it takes a value in any given range is determined by a random process and the value of that probability is given by the probability distribution function.


Mean 266 and standard deviation is 16 what percentage of human pregnancies last between 250 and 282?

If G is a random variable representing the gestation period, an it is assumed to have a normal distribution with the given mean and standard deviation, then Prob(250 < G < 282) = Prob(-1 < Z < 1) where Z has the standard normal distribution. = 0.6827 = 68.3%


What is the standard deviation of the data set given below?

A single number, such as 478912, always has a standard deviation of 0.


What is the difference between population and sample distribution?

Sampling distribution is the probability distribution of a given sample statistic. For example, the sample mean. We could take many samples of size k and look at the mean of each of those. The means would form a distribution and that distribution has a mean, a variance and standard deviation. Now the population only has one mean, so we can't do this. Population distribution can refer to how some quality of the population is distributed among the population.