To calculate the number of 3-digit combinations using numbers 1-6, including 1 and 6, we need to consider the total number of options for each digit. Since we are including 1 and 6, there are 6 options for the hundreds place (1-6), 6 options for the tens place (1-6), and 6 options for the ones place (1-6). Therefore, the total number of 3-digit combinations is 6 x 6 x 6 = 216.
Chat with our AI personalities
If you are able to repeat numbers you would take 6 * 6 * 6 = 216 combinations.
If you are not able to repeat numbers you would take 6 * 5 * 4 = 120 combinations.
Any 6 from 51 = 18,009,460 combinations
There are 9 1-digit numbers and 16-2 digit numbers. So a 5 digit combination is obtained as:Five 1-digit numbers and no 2-digit numbers: 126 combinationsThree 1-digit numbers and one 2-digit number: 1344 combinationsOne 1-digit numbers and two 2-digit numbers: 1080 combinationsThat makes a total of 2550 combinations. This scheme does not differentiate between {13, 24, 5} and {1, 2, 3, 4, 5}. Adjusting for that would complicate the calculation considerably and reduce the number of combinations.
120 combinations using each digit once per combination. There are 625 combinations if you can repeat the digits.
10 to the third assuming zero is included and can lead, otherwise 9 to the third, ie 729. This all assumes that you are talking about 3-digit numbers. * * * * * No. That may be the number of permutations but those are different from combinations. In a combiation, the order of the digits does not matter so that 123 is the same as 132 or 213 etc. With repetition, there are 210 COMBINATIONS, including one that is {0,0,0}.
5 digit combinations for numbers 1 to 50= 50 C 5N!= 1x2x3x4x...x (N-1) x N= (50!)/(45!x5!) =(50x49x...x2x1)/((45x44x...x2x1)(5x4x3x2x1))=(50x49x48x47x46)/(5x4x3x2)=254251200/120 =21187602118760 combinations