answersLogoWhite

0

Blocking is more for experimental design while strata is for survey sampling.

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

RossRoss
Every question is just a happy little opportunity.
Chat with Ross
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: What is the difference between strata and blocks in statistics?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What is the difference between a simple random sample and a stratified random sample?

Sometimes a population consists of a number of subsets (strata) such that members within any particular strata are alike while difference between strata are more than simply random variations. In such a case, the population can be split up into strata. Then a stratified random sample consists of simple random samples, with the same sampling proportion, taken within each stratum.


Example of cluster sampling?

In a cluster sample, researchers divide subjects into strata (like cities, for example), randomly select a few strata (draw the names of a few cities from a hat) and sample every subject in those strata (question everyone in that city.) A significant disadvantage is that you may select strata that completely overlook a feature relevant to your study.


What is the difference between stratified random sampling and cluster sampling?

Basically in a stratified sampling procedure, the population is first partitioned into disjoint classes (the strata) which together are exhaustive. Thus each population element should be within one and only one stratum. Then a simple random sample is taken from each stratum, the sampling effort may either be a proportional allocation (each simple random sample would contain an amount of variates from a stratum which is proportional to the size of that stratum) or according to optimal allocation, where the target is to have a final sample with the minimum variabilty possible. The main difference between stratified and cluster sampling is that in stratified sampling all the strata need to be sampled. In cluster sampling one proceeds by first selecting a number of clusters at random and then sampling each cluster or conduct a census of each cluster. But usually not all clusters would be included.


Why is strata called homogenous in stratified sampling?

Homogeneous refers to groups composed of parts or elements that are all of the same kind or nature. In stratified sampling, a population which is composed of diverse groupings is subdivided into two or more groups so that the diversity is decreased in the subgroups. For example, if the total population is composed of males and females, then stratification into subgroups of male and female will result in strata that are of the same kind with respect to the classification variable gender: i.e, the strata are homogeneous. Other classification variables or combinations of classification variables may be used to improve homogeneity.


Why do you use Stratified sampling?

They have used Stratified Sample. Design because stratified sample is a sampling technique in which the researcher divided the entire target population into different subgroups, or strata, and then randomly selects the final subjects proportionally from the different strata. This type of sampling is used when the researcher wants to highlight specific subgroups within the population. So in this Research this technique is used by the researcher.