To calculate the number of 4-number combinations possible with 16 numbers, you would use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n = 16 (the total number of numbers) and r = 4 (the number of numbers in each combination). Plugging these values into the formula, you would calculate 16C4 = 16! / 4!(16-4)! = 1820. Therefore, there are 1820 possible 4-number combinations with 16 numbers.
Assuming that "number" means digits and that it is permutations (rather than combinations) that are required, the answer is 816 which is 281.475 trillion (approx).
If order matters and a number cannot be repeated, then there are 16x15x14x13 = 43680 different combinations. If order does not matter then you must divide by the number of ways you can rearrage the same 4 numbers i.e. divide by 4x3x2x1=24 so you can select 4 numbers from a group of 16 in 43680/24 = 1820 ways. In mathematical terms there are 43680 permutations of 16 numbers taken 4 at a time and 1820 combinations of 16 number taken 4 at a time.
252 combinations, :)
The number of combinations is 10C4 = 10*9*8*7/(4*3*2*1) = 210
To calculate the number of 4-number combinations possible with 16 numbers, you would use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n = 16 (the total number of numbers) and r = 4 (the number of numbers in each combination). Plugging these values into the formula, you would calculate 16C4 = 16! / 4!(16-4)! = 1820. Therefore, there are 1820 possible 4-number combinations with 16 numbers.
This question needs clarificatioh. There are 4 one digit number combinations, 16 two digit combinations, ... 4 raised to the n power for n digit combinations.
Assuming that "number" means digits and that it is permutations (rather than combinations) that are required, the answer is 816 which is 281.475 trillion (approx).
There are 16 possible combinations of maternal and paternal chromosomes that can be packaged in gametes made by an organism with a diploid number of 8. This is because during meiosis, homologous pairs of chromosomes segregate independently, resulting in various combinations of maternal and paternal chromosomes in gametes.
There are 18*17*16/6 = 816 of them!
4 bits. 24 = 16, so you have 16 different combinations.4 bits. 24 = 16, so you have 16 different combinations.4 bits. 24 = 16, so you have 16 different combinations.4 bits. 24 = 16, so you have 16 different combinations.
If order matters and a number cannot be repeated, then there are 16x15x14x13 = 43680 different combinations. If order does not matter then you must divide by the number of ways you can rearrage the same 4 numbers i.e. divide by 4x3x2x1=24 so you can select 4 numbers from a group of 16 in 43680/24 = 1820 ways. In mathematical terms there are 43680 permutations of 16 numbers taken 4 at a time and 1820 combinations of 16 number taken 4 at a time.
The number of combinations is 20C5 = 20!/(15!*5!) = 20*19*18*17*16/(5*4*3*2*1) = 15,504
16
There are 18C4 = 18!/[18-4)!4!] = 18*17*16*15/(4*3*2*1) = 3060 combinations.
Well, honey, if you've got 4 checkboxes, you've got yourself 2 to the power of 4 combinations, which equals 16. So buckle up and start checking those boxes, because the possibilities are endless... well, 16 to be exact.
16