It is true.
If the probability of A is p1 and probability of B is p2 where A and B are independent events or outcomes, then the probability of both A and B occurring is p1 x p2. See related link for examples.
Independent Events
Two events are said to be independent if the result of the second event is not affected by the result of the first event. Some common ways to teach this are to perform simulations with coin flips.Students need to understand that if A and B are independent events, the probability of both events occurring is the product of the probabilities of the individual events.Students can predict and then observe probabilities of a fixed number of heads or tails.This lets then see the ideas in action.
Two events are independent if the outcome of one has no effect on the probability of the outcomes for the other.
yss
Independent events with a probability of zero
No, the combined probability is the product of the probability of their separate occurrances.
Two independent events occurring.
It sounds like Bayesian statistics.
The product rule states that the probability of two independent events occurring together is equal to the product of their individual probabilities. In genetics, the product rule is used to calculate the probability of inheriting multiple independent traits or alleles simultaneously from different parents.
It is true.
If the probability of A is p1 and probability of B is p2 where A and B are independent events or outcomes, then the probability of both A and B occurring is p1 x p2. See related link for examples.
You multiply together their individual probabilities.
What is the difference between dependant and independent events in terms of probability
If the probability of an event is 0.02, then the probability of two such events occurring is 0.022 or 0.0004.
The probability of getting a heads on the first flip is 1/2. Similarly, the probability on each subsequent flip is 1/2, since they are independent events. The probability of several independent events happening together is the product of their individual probabilities.