if P(A)>0 then P(B'|A)=1-P(B|A) so P(A intersect B')=P(A)P(B'|A)=P(A)[1-P(B|A)] =P(A)[1-P(B)] =P(A)P(B') the definition of independent events is if P(A intersect B')=P(A)P(B') that is the proof
There are symbols missing from your question which I cam struggling to guess and re-insert. p(a) = 2/3 p(b ??? a) = 1/2 p(a ∪ b) = 4/5 p(b) = ? Why use the set notation of Union on the third given probability whereas the second probability has something missing but the "sets" are in the other order, and the order wouldn't matter in sets. There are two possibilities: 1) The second probability is: p(b ∩ a) = p(a ∩ b) = 1/2 → p(a) + p(b) = p(a ∪ b) + p(a ∩ b) → p(b) = p(a ∪ b) + p(a ∩ b) - p(a) = 4/5 + 1/2 - 2/3 = 24/30 + 15/30 - 20/30 = 19/30 2) The second and third probabilities are probabilities of "given that", ie: p(b|a) = 1/2 p(a|b) = 4/5 → Use Bayes theorem: p(b)p(a|b) = p(a)p(b|a) → p(b) = (p(a)p(b|a))/p(a|b) = (2/3 × 1/2) / (4/5) = 2/3 × 1/2 × 5/4 = 5/12
Sum Rule: P(A) = \sum_{B} P(A,B) Product Rule: P(A , B) = P(A) P(B|A) or P(A, B)=P(B) P(A|B) [P(A|B) means probability of A given that B has occurred] P(A, B) = P(A) P(B) , if A and B are independent events.
The probability of inclusive events A or B occurring is given by P(A or B) = P(A) + P(B) - P(A and B), where P(A) and P(B) represent the probabilities of events A and B occurring, respectively.
P(A|B)= P(A n B) / P(B) P(A n B) = probability of both A and B happening to check for independence you see if P(A|B) = P(B)
If they're disjoint events: P(A and B) = P(A) + P(B) Generally: P(A and B) = P(A) + P(B) - P(A|B)
Let's try this example (best conceived of as a squared 2x2 table with sums to the side). The comma here is an AND logical operator. P(A, B) = 0.1 P(A, non-B) = 0.4 P(non-A, B) = 0.3 P(non-A, non-B) = 0.2 then P(A) and P(B) are obtained by summing on the different sides of the table: P(A) = P(A, B) + P(A, non-B) = 0.1 + 0.4 = 0.5 P(B) = P(A,B) + P(non-A, B) = 0.1 + 0.3 = 0.4 so P(A given B) = P (A, B) / P (B) = 0.1 / 0.4 = 0.25 also written P(A|B) P(B given A) = P (A,B) / P (A) = 0.1 / 0.5 = 0.2 The difference comes from the different negated events added to form the whole P(A) and P(B). If P(A, non-B) = P (B, non-A) then P(A) = P(B) and also P(A|B) = P(B|A).
This has to do with the union of events. If events A and B are in the set S, then the union of A and B is the set of outcomes in A or B. This means that either event A or event B, or both, can occur. P(A or B) = P(A) + P(B) - P(A and B) **P(A and B) is subtracted, since by taking P(A) + P(B), their intersection, P(A and B), has already been included. In other words, if you did not subtract it, you would be including their intersection twice. Draw a Venn Diagram to visualize. If A and B can only happen separately, i.e., they are independent events and thus P(A and B) = 0, then, P(A or B) = P(A) + P(B) - P(A and B) = P(A) + P(B) - 0 = P(A) + P(B)
P=B×RB=P÷RR=P÷B
If A and B are two events then P(A or B) = P(A) + P(B) - P(A and B)
If A and B are mutually exclusive event then Probability of A or B is P(A)+P(B). If they are not mutually exclusive then it is that minus the probability of the P(A)+P(B) That is to say P( A or B)= P(A)+P(B)- P(A and B). Of course it is clear that if they are mutually exclusive, P(A and B)=0 and we have the first formula.
Given two events, A and B, the conditional probability rule states that P(A and B) = P(A given that B has occurred)*P(B) If A and B are independent, then the occurrence (or not) of B makes no difference to the probability of A happening. So that P(A given that B has occurred) = P(A) and therefore, you get P(A and B) = P(A)*P(B)