More answers

False.

Q: Are there more rational numbers then irrational numbers true or false?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

No. There are infinitely many of both but the number of irrational numbers is an order of infinity greater than that for rational numbers.

Next to any rational number is an irrational number, but next to an irrational number can be either a rational number or an irrational number, but it is infinitely more likely to be an irrational number (as between any two rational numbers are an infinity of irrational numbers).

No. Although there are infinitely many of either, there are more irrational numbers than rational numbers. The cardinality of the set of rational numbers is Ã€0 (Aleph-null) while the cardinality of the set of irrational numbers is 2Ã€0.

No. Although the count of either kind of number is infinite, the cardinality of irrational numbers is an order of infinity greater than for the set of rational numbers.

The sum of two rational numbers is rational.From there, it follows that the sum of a finite set of rational numbers is also rational.

Related questions

In between any two rational numbers there is an irrational number. In between any two irrational numbers there is a rational number.

In between any two rational numbers there is an irrational number. In between any two Irrational Numbers there is a rational number.

-- There's an infinite number of rational numbers. -- There's an infinite number of irrational numbers. -- There are more irrational numbers than rational numbers. -- The difference between the number of irrational numbers and the number of rational numbers is infinite.

Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.

Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)

No. There are infinitely many of both but the number of irrational numbers is an order of infinity greater than that for rational numbers.

Next to any rational number is an irrational number, but next to an irrational number can be either a rational number or an irrational number, but it is infinitely more likely to be an irrational number (as between any two rational numbers are an infinity of irrational numbers).

Rational numbers are numbers that can be written as a fraction. Irrational numbers cannot be expressed as a fraction.

Infinitely many. In fact, between any two different real numbers, there are infinitely many rational numbers, and infinitely many irrational numbers. (More precisely, beth-zero rational numbers, and beth-one irrational numbers - that is, there are more irrational numbers than rational numbers in any such interval.)

No. Although there are infinitely many of either, there are more irrational numbers than rational numbers. The cardinality of the set of rational numbers is Ã€0 (Aleph-null) while the cardinality of the set of irrational numbers is 2Ã€0.

No. In fact, there are infinitely more irrational numbers than there are rational numbers.

There are more irrational numbers between any two rational numbers than there are rational numbers in total.