nth term Tn = arn-1
a = first term
r = common factor
It is 0.2
It is 1062882.
It is a*r^4 where a is the first term and r is the common ratio (the ratio between a term and the one before it).
If you remember taking sequences, you'll recall that there are three main types: 1)Arithmetic Sequence 2)Geometric Sequence 3)Varied-formula Sequence If the difference between the terms is additional or subractional then its an arithmetic sequence, lets check if this is the case, subtract the first term from the second and the second from the third etc : 1, 2, 4, 8, 16 2-1=1 4-2=2 8-4=4....all the answers are not constant so it is not an arithmetic sequence In a geometric sequence, the difference is in multiplication or division so we divide like this t2/t1 then t3/t2 and then t4/t3 and so on: 2/1=2 4/2=2 8/4=2...all the numbers are constant so this sequence we have here is a geometric sequence to find the nth term we use a formula it varies from the kind of sequence you are using, the formula for a geometric sequence is: tn=t1*r^(n-1) The formula might look confusing so ill write it down for you: "term n= term 1 multiplied by common ratio to the power n-1" The 'common ratio' is the constant so in this case it equals 2. tn=1*2^(n-l) that is the farthest you can go, if the question gives you the nth term then you may substitute it yourself. You didn't make yourself very clear with the last part of your question...
A geometric term is a term of geometry.
To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.
To find the fifth term of the geometric sequence 8, 0, 4, 0, 20, we need to identify a pattern. The terms appear to alternate between zero and other values, but there might be a misunderstanding since the terms provided don't follow a consistent geometric ratio. Assuming the sequence is correct as given, the fifth term is 20.
The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).
-5,120
Yes, that's what a geometric sequence is about.
Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5
In a geometric sequence, the ratio between consecutive terms is constant. Given that the sixth term is 18 and the eighth term is 32, we can find the common ratio ( r ) by dividing the eighth term by the sixth term: ( r = \frac{32}{18} = \frac{16}{9} ). To find the seventh term, we can multiply the sixth term by the common ratio: ( 18 \times \frac{16}{9} = 32 ). Therefore, the seventh term is 32.
A function in which the y-values form a geometric sequence is referred to as a geometric function. In such functions, each successive value is obtained by multiplying the previous value by a constant ratio. This characteristic means that for a given input, the output values follow a specific pattern defined by the geometric sequence.
To express a geometric sequence in function notation, identify the first term (a) and the common ratio (r) of the sequence. The nth term of a geometric sequence can be represented as ( f(n) = a \cdot r^{(n-1)} ), where ( n ) is the term number. For example, if the first term is 2 and the common ratio is 3, the function notation would be ( f(n) = 2 \cdot 3^{(n-1)} ). This allows you to calculate any term in the sequence using the function ( f(n) ).
2946
The pattern given is a geometric sequence where each term is multiplied by 2 to get the next term. To find the 20th term, we can use the formula for the nth term of a geometric sequence: ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term (3) and ( r ) is the common ratio (2). Thus, the 20th term is calculated as ( a_{20} = 3 \cdot 2^{19} ). Evaluating this gives ( a_{20} = 3 \cdot 524288 = 1572864 ).
Yes, it can.