To find the 21st term of the sequence, we need to first identify the pattern. From 6 to 13, there's an increase of 7, and from 13 to 20, there's also an increase of 7. It seems like there's a constant increase of 7 between consecutive terms.
So, if we continue this pattern, the 21st term would be 20 + 7, which equals 27.
The given sequence (7, 14, 21, 28, 35,....) is an arithmetic sequence where each term increases by 7. The nth term of the given sequence is 7n
Oh, dude, you just add one to the term number to get the next term. So, if the 20th term is 50, the 21st term would be the 20th term plus the common difference of the sequence. It's like basic math, man.
penies
The given sequence is an arithmetic sequence with a common difference of 4 between each term. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term (a) is -3, the common difference (d) is 4, and the term number (n) is the position in the sequence. So, the nth term of the given sequence is -3 + (n-1)4 = 4n - 7.
nth term Tn = arn-1 a = first term r = common factor
For an A.P., nth term of the sequence is given by 5 + (n-1)d, where d is the common difference.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
The given sequence is 11, 31, 51, 72 The nth term of this sequence can be expressed as an = 11 + (n - 1) × 20 Therefore, the nth term is 11 + (n - 1) × 20, where n is the position of the term in the sequence.
The difference between successive terms in an arithmetic sequence is a constant. Denote this by r. Suppose the first term is a. Then the nth term, of the sequence is given by t(n) = (a-r) + n*r or a + (n-1)*r
Well, darling, the sequence you've got there is just the perfect squares of numbers. The 8th term would be the square of the 8th number, which is 64. So, the 8th term of the sequence 1, 4, 9, 16, 25 is 64. Keep those brain cells sharp, honey!
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
you must find the pattern of the sequence in order to find the next 50 terms using that pattern and the first part of the sequence given