There are 12,033,222,880 of them.
To find the total number of combinations using three series of numbers, each ranging from 1 to 13, you multiply the number of choices for each series. Since each series has 13 options, the total combinations are (13 \times 13 \times 13), which equals (13^3 = 2,197). Therefore, there are 2,197 possible combinations.
To calculate the number of 4-number combinations possible with 16 numbers, you would use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n = 16 (the total number of numbers) and r = 4 (the number of numbers in each combination). Plugging these values into the formula, you would calculate 16C4 = 16! / 4!(16-4)! = 1820. Therefore, there are 1820 possible 4-number combinations with 16 numbers.
13 combinations of 3
There are 24C12 = 24*23*...*13/(12*11*...*1) = 2,704,156 combinations.
(13 x 12 x 11 x 10)/(4 x 3 x 2 x 1) = 715 of them
If they can repeat, then: 17^6=24,137,569 If they can't repeat, then: 17*16*15*14*13*12=8,910,720
1 and 11 and 21 and 31 and 42 and 12 and 22 and 32 and 43 and 13 and 23 and 33 and 44 and 14 and 24 and 34 and 416 combinations
You can make 6 combinations with 3 numbers. They are: 123 213 312 132 231 321 * * * * * NO! Those are permutations! In combitorials, the order does not matter so that the combination 123 is the same as the combination 132 etc. So all of the above comprise just 1 combination. With three numbers you can have 1 combination of three numbers (as discussed above), 3 combinations of 2 numbers (12, 13 and 23) 3 combinations of 1 number (1, 2 and 3) In all, with n numbers you can have 2n - 1 combinations. Or, if you allow the null combination (that consisting of no numbers) you have 2n combinations.
There are 5245786 possible combinations and I am not stupid enough to try and list what they are!
Only three: 12, 13 and 23. Remember that the combinations 12 and 21 are the same.
Assuming you meant how many combinations can be formed by picking 8 numbers from 56 numbers, we have:(56 * 55 * 54 * 53 * 52 * 51 * 50 * 49)/8! = (7 * 11 * 3 * 53 * 13 * 51 * 25 * 7) = 1420494075 combinations. (Also equal to 57274321104000/40320)
As a product of its prime factors: 2*5*13 = 130