Evarist Galois
http://www.britannica.com/eb/topic-224587/Evariste-Galois
Equations are not linear when they are quadratic equations which are graphed in the form of a parabola
Using the quadratic equation formula or completing the square
Why are Quadratic equations, which are expressed in the form of ax2 + bx + c = 0, where a does not equal 0,
The quadratic formula is used today to find the solutions to quadratic equations, which are equations of the form ax^2 + bx + c = 0. By using the quadratic formula, we can determine the values of x that satisfy the quadratic equation and represent the points where the graph of the equation intersects the x-axis.
Quadratic equations are called quadratic because quadratus is Latin for ''square'';in the leading term the variable is squared. also...it is form of ax^2+bx+c=0
A linear equation has the form of mx + b, while a quadratic equation's form is ax2+bx+c. Also, a linear equation's graph forms a line, while a quadratic equation's graph forms a parabola.
You can combine equivalent terms. You should strive to put the equation in the form ax2 + bx + c = 0. Once it is in this standard form, you can apply the quadratic formula, or some other method, to solve it.
Start with a quadratic equation in the form � � 2 � � � = 0 ax 2 +bx+c=0, where � a, � b, and � c are constants, and � a is not equal to zero ( � ≠ 0 a =0).
The Babylonians, as early as 1800 BC (displayed on Old Babylonian clay tablets) could solve a pair of simultaneous equations of the form: : which are equivalent to the equation:[1] : The original pair of equations were solved as follows: # Form # Form # Form # Form # Find by inspection of the values in (1) and (4).[2] In the Sulba Sutras in ancient India circa 8th century BCE quadratic equations of the form ax2 = c and ax2 + bx = c were explored using geometric methods. Babylonian mathematicians from circa 400 BCE and Chinese mathematicians from circa 200 BCE used the method of completing the square to solve quadratic equations with positive roots, but did not have a general formula. Euclid, the Greek mathematician, produced a more abstract geometrical method around 300 BCE. In 628 CE, Brahmagupta gave the first explicit (although still not completely general) solution of the quadratic equation: : " To the absolute number multiplied by four times the [coefficient of the] square, add the square of the [coefficient of the] middle term; the square root of the same, less the [coefficient of the] middle term, being divided by twice the [coefficient of the] square is the value. (Brahmasphutasiddhanta (Colebrook translation, 1817, page 346)[2] " This is equivalent to: :The Bakhshali Manuscript dated to have been written in India in the 7th century CE contained an algebraic formula for solving quadratic equations, as well as quadratic indeterminate equations (originally of type ax/c = y). Mohammad bin Musa Al-kwarismi (Persia, 9th century) developed a set of formulae that worked for positive solutions. Abraham bar Hiyya Ha-Nasi (also known by the Latin name Savasorda) introduced the complete solution to Europe in his book Liber embadorum in the 12th century. Bhāskara II (1114-1185), an Indian mathematician-astronomer, gave the first general solution to the quadratic equation with two roots.[3] The writing of the Chinese mathematician Yang Hui (1238-1298 AD) represents the first in which quadratic equations with negative coefficients of 'x' appear, although he attributes this to the earlier Liu Yi. The Babylonians, as early as 1800 BC (displayed on Old Babylonian clay tablets) could solve a pair of simultaneous equations of the form: : which are equivalent to the equation:[1] : The original pair of equations were solved as follows: # Form # Form # Form # Form # Find by inspection of the values in (1) and (4).[2] In the Sulba Sutras in ancient India circa 8th century BCE quadratic equations of the form ax2 = c and ax2 + bx = c were explored using geometric methods. Babylonian mathematicians from circa 400 BCE and Chinese mathematicians from circa 200 BCE used the method of completing the square to solve quadratic equations with positive roots, but did not have a general formula. Euclid, the Greek mathematician, produced a more abstract geometrical method around 300 BCE. In 628 CE, Brahmagupta gave the first explicit (although still not completely general) solution of the quadratic equation: : " To the absolute number multiplied by four times the [coefficient of the] square, add the square of the [coefficient of the] middle term; the square root of the same, less the [coefficient of the] middle term, being divided by twice the [coefficient of the] square is the value. (Brahmasphutasiddhanta (Colebrook translation, 1817, page 346)[2] " This is equivalent to: :The Bakhshali Manuscript dated to have been written in India in the 7th century CE contained an algebraic formula for solving quadratic equations, as well as quadratic indeterminate equations (originally of type ax/c = y). Mohammad bin Musa Al-kwarismi (Persia, 9th century) developed a set of formulae that worked for positive solutions. Abraham bar Hiyya Ha-Nasi (also known by the Latin name Savasorda) introduced the complete solution to Europe in his book Liber embadorum in the 12th century. Bhāskara II (1114-1185), an Indian mathematician-astronomer, gave the first general solution to the quadratic equation with two roots.[3] The writing of the Chinese mathematician Yang Hui (1238-1298 AD) represents the first in which quadratic equations with negative coefficients of 'x' appear, although he attributes this to the earlier Liu Yi.
Quadratic functions will be used in chemistry in real life. Quadratic equations are used to solve equilibrium problems and determine the amount of reactants in a mixture that will react and the concentrations of products that will be form.
Equations of the form z^4+az^2+a_0 are known as biquadratic equations. They are quartic equations. In general they can be solved by reducing them to a quadratic equation where x=z^2 is the variable. Then you can use the quadratic formula or factor. So plugging in x to the biquadratic giives us x^2+ax+a_0.
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is Where x represents a variable, and a, b, and c, constants, with a ≠ 0. (If a = 0, the equation becomes a linear equation.) The constants a, b, and c, are called respectively, the quadratic coefficient, the linear coefficient and the constant term or free term. The term "quadratic" comes from quadratus, which is the Latin word for "square." Quadratic equations can be solved by factoring, completing the square, graphing, Newton's method, and using the quadratic formula (given below). One common use of quadratic equations is computing trajectories in projectile motion. Because it is in the form of ax^2+bx+c=0