If: y = x2-4x+8 and y = 8x-x2-14
Then: x2-4x+8 = 8x-x2-14
So: 2x2-12x+22 = 0
Discriminant: 122-(4*2*22) = -32
Because the discriminant is less than 0 there is no actual contact between the given parabolas
If: y = x2+20x+100 and x2-20x+100 Then: x2+20x+100 = x2-20x+100 So: 40x = 0 => x = 0 When x = 0 then y = 100 Therefore point of intersection: (0, 100)
They intersect at the point of: (-3/2, 11/4)
If: y = 4x^2 -2x -1 and y = -2x^2 +3x +5 Then: 4x^2-2x-1 = -2x^2+3x+5 =>6x^2-5x-6 = 0 Solving the above quadratic equation: x = -2/3 or x = 3/2 Therefore by substitution the points of intersection are: (-2/3, 19/9) and (3/2, 5)
If: y = 4x^2 -2x -1 and y = -2x^2+3x+5 Then: 4x^2 -2x -1 = -2x^2+3x+5 => 6x^2-5x-6 = 0 Solving the above quadratic equation: x = -2/3 or x = 3/2 Therefore the points of intersection by substitution are: (-2/3, 19/9) and (3/2, 5)
If: y = -2x^2 +3x +5 and y = 4x^2 -2x -1 Then: 4x^2 -2x -1 = -2x^2 +3x +5 So it follows: 6x^2 -5x -6 = 0 Using the quadratic equation formula: x = -2/3 or x = 3/2 Therefore points of intersection by substitution are at: (-2/3, 19/9) and (3/2, 5)
If: y = 4x2-2x-1 and y = -2x2+3x+5 Then: 4x2-2x-1 = -2x2+3x+5 So: 6x2-5x-6 = 0 Solving the quadratic equation: x = -2/3 or x = 3/2 Points of intersection by substitution: (-2/3, 19/9) and (3/2, 5)
There is no connection between the given curves because when they are combined into a single quadratic equation the discriminant of the equation is less than zero which means they share no valid roots.
The intersection is (-2, 6)
1,6
If: y = 4x2-2x-1 and y = -2x2+3x+5 Then: 4x2-2x-1 = -2x2+3x+5 And so: 6x2-5x-6 = 0 Using the the quadratic equation formula: x = -2/3 and x = 3/2 Substitution: when x = -2/3 then y = 19/9 and when x = 3/2 then y = 5 Points of intersection: (-2/3, 19/9) and (3/2, 5)
The points are (-1/3, 5/3) and (8, 3).Another Answer:-The x coordinates work out as -1/3 and 8Substituting the x values into the equations the points are at (-1/3, 13/9) and (8, 157)
It works out that the point of intersection is at (-4, -3.5) on the Cartesian plane.