It is 4.
Power 2: units digit 9. Multiply by 49 again to get power 4: units digit 1. So every 4th power gives units digit 1. So 16th power has units digit 1, so the previous power, the 15th must have units digit 3.
The units' digit of 222 to the power 666 is 4.
Expressed in numerical form, 248 = 281474976710656 - the units digit is therefore 6. With the exception of 20 = 1. the units digit of successive powers of 2 runs 2, 4, 8, 6... continuously - therefore, an exponent which is a multiple of 4 will have a units digit of 6.
To find the units digit of 8 to the power of 50, we need to look for a pattern in the units digits of powers of 8. The units digit of powers of 8 cycles in a pattern: 8^1 = 8, 8^2 = 4, 8^3 = 2, 8^4 = 6, and so on. Since the cycle repeats every 4 powers, we can divide 50 by 4 to find that the 50th power will have the same units digit as 8^2, which is 4. Therefore, the units digit of 8 to the power of 50 is 4.
Well, darling, to find the units digit of 2 to the 57th power, you just need to look for a pattern. The units digit of powers of 2 cycles every 4 powers: 2, 4, 8, 6. So, 57 divided by 4 leaves a remainder of 1, meaning the units digit of 2 to the 57th power is 2. Hope that clears things up for you, sugar!
To find the units digit of (27^{27}), we can look at the units digit of (27), which is (7). We then need to find the units digit of (7^{27}). The units digits of the powers of (7) cycle every four terms: (7^1 = 7), (7^2 = 49) (units digit (9)), (7^3 = 343) (units digit (3)), and (7^4 = 2401) (units digit (1)). Since (27 \mod 4 = 3), the units digit of (7^{27}) is the same as that of (7^3), which is (3). Thus, the units digit of (27^{27}) is (3).
The unit's digit in the expansion of 2 raised to the 725th power is 8. This can be determined by using the concept of the "unit's digit law". This law states that the units digit of a number raised to any power is the same as the units digit of the number itself. In this case, the number is 2, which has a units digit of 2, so the units digit of 2 to the 725th power is also 2. However, this is not the final answer. To get the unit's digit of 2 to the 725th power, we must use the "repeating pattern law". This law states that when a number is raised to any power, the unit's digit will follow a repeating pattern. For 2, this pattern is 8, 4, 2, 6. This means that the units digit of 2 to any power will follow this pattern, repeating every 4 powers. So, if we look at the 725th power of 2, we can see that it is in the 4th cycle of this repeating pattern. This means that the units digit of 2 to the 725th power is 8.
To find the units digit of a number raised to a power, we can look for patterns in the units digits of the powers of that number. For 2, the units digits of the powers cycle in a pattern: 2, 4, 8, 6. Since 2011 is 3 more than a multiple of 4 (2011 = 4 * 502 + 3), the units digit of 2 to the power of 2011 will be the fourth number in the cycle, which is 6.
When the tens digit is even and the units digit is 0, 4 or 8 or the tens digit is odd and the units digit is 2 or 6.
To find the units' digit of 3 to the power of 333, we need to look for a pattern. The units' digit of powers of 3 cycles in a pattern: 3, 9, 7, 1. Since 333 divided by 4 leaves a remainder of 1, the units' digit of 3 to the power of 333 will be the first digit in the pattern, which is 3.
When multiplying numbers with the same units digit, the units digit of the product is determined by the units digit of the base number raised to the power of the number of times it is being multiplied. In this case, since 7 is being multiplied 100 times, the units digit of the product will be the same as the units digit of 7^100. The units digit of 7^100 can be found by looking for a pattern in the units digits of powers of 7: 7^1 = 7, 7^2 = 49, 7^3 = 343, 7^4 = 2401, and so on. The pattern repeats every 4 powers, so the units digit of 7^100 will be the same as 7^4, which is 1. Therefore, the units digit of the product when one hundred 7's are multiplied is 1.
The units digit of 3 raised to any power follows a pattern: 3, 9, 7, 1, and then it repeats. Since 200 is divisible by 4, the units digit of 3 to the 200th power is 1. So, grab a calculator or trust my sassy math skills, honey, the answer is 1.