999 is 333 :) (dividedby three)
3
Power 2: units digit 9. Multiply by 49 again to get power 4: units digit 1. So every 4th power gives units digit 1. So 16th power has units digit 1, so the previous power, the 15th must have units digit 3.
3
In the number 53, the digit 3 holds a place value of 3 units. This means that the digit 3 represents three single units in the number 53. It is important to note that the value of a digit in a number is determined by its position or place value within the number.
To find the last digit of 373^333, we need to look for a pattern in the units digit of the powers of 3. The units digit of powers of 3 cycles every 4 powers: 3^1 = 3, 3^2 = 9, 3^3 = 7, 3^4 = 1, and then it repeats. Since 333 is one less than a multiple of 4, the units digit of 3^333 will be the third number in the cycle, which is 7. Therefore, the last digit of 373^333 is 7.
3 to a power divisible by 4 will have a units digit of 1.The powers of 3 are 3, 9, 27, 81 ... obviously, the next one will have a units digit of 1x3 or 3, the next one will have a units digit of 3x3 or 9, the next one will have a units digit of 7 (because 9x3 is 27), the next one will have a units digit of 1 (because 7x3 is 21), and then the cycle starts over with a units digit of 3 again.
999 is 333 :) (dividedby three)
333 3 11 111
To find the last digit of a number raised to a power, we can use the concept of modular arithmetic. The last digit of 333 to the power of 444 can be determined by finding the remainder when 333 is divided by 10, which is 3. Since the last digit of 333 is 3, we need to find the remainder of 444 divided by 4, which is 0. Therefore, the last digit of 333 to the power of 444 is the same as the last digit of 3 to the power of 4, which is 1.
3
it is 3
333
Oh, dude, okay, so when you raise 2013 to the power of 2013, you're basically asking what the units digit of that massive number is. Well, lucky for you, you don't need to calculate the whole thing because the units digit of a number repeats in a pattern. So, the units digit of 2013 to the power of 2013 is 7. Cool, right?
Power 2: units digit 9. Multiply by 49 again to get power 4: units digit 1. So every 4th power gives units digit 1. So 16th power has units digit 1, so the previous power, the 15th must have units digit 3.
Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.Since neither the three hundred, nor the ten can contribute to the units digit in the answer, you look for a pattern in the units digit in the powers of 2n.20 = 121 = 222 = 423 = 824 = 2and after that , the pattern repeats, 4, 8, 2, 4, 8, 2, ...So if n (mod 3) = 1 the units digit is 2if n (mod 3) = 2 the units digit is 4and if n (mod 3) = 0 the units digit is 8where n (mod 3) is the remainder when n is divided by 3.312 is divisible by 3 [3+1+2=6 is divisible by 3] so 312 mod(3) =0 and so the units digit is 8.
333 is one of 300 possible answers.