answersLogoWhite

0

If these are sides of a triangle then AC can have any value in the interval (3, 13).

User Avatar

Wiki User

7y ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: If AB 5 and BC 8 then AC?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

If BC equals 8 and AC equals 28 find AB?

36


How long is side ac when side ab is 6 and side bc is 8 in a triangle?

If it's a right angle triangle then side ac is 10 units in length.


Ad equals 10units ab equals 8 ac equals 12 ed equals 4.5 what is the measure of bd?

9


What is the perimeter of parallelogram abcd with ad equals 10 units ab equals 8 units ac equals 12 units ed equals 4.5 units?

If abcd is a parallelogram, then the lengths ab and ad are sufficient. The perimeter is 36 units.


What is the scale factor of the perimeters of triangle ABC and triangle WXY?

APPLYING THE SCALE FACTOR OF SIMILAR TRIANGLES TO THE PERIMETER The scale factor of two similar triangles (or any geometric shape, for that matter) is the ratio between two corresponding sides. In today's lesson, we will show that this same scale factor also applies to the ratio of the two triangles' perimeter. This is fairly easy to show, so today's lesson will be short. PROBLEM Two triangles, ΔABC and ΔADE are similar, ΔABC∼ ΔADE. The scale factor, AB/AD is 6/5. Find the ratio of the perimeters of the two triangles. Similar triangles in geometry STRATEGY We will use the definition of the scale factor to define one set of sides in terms of the other set of sides, Then, apply the definition of the perimeter. and write out the perimeter of both triangles using one set of sides. SOLUTION (1) ΔABC∼ ΔADE //Given (2) AB/AD = 6/5 //Given (3) BC/DE = 6/5 //(1), (2), scale factor is the same for all sides in similar triangles. (4) AC/AE = 6/5 //(1), (2), scale factor is the same for all sides in similar triangles. (5) AB = 6/5*AD // rearrange (2) (6) BC = 6/5*DE // rearrange (3) (7) AC = 6/5*AE // rearrange (4) (8) PABC=AB+BC+AC //definition of perimeter (9) PADE=AD+DE+AE //definition of perimeter (10)PABC=6/5AD+6/5DE+ 6/5*AE //(8), (5), (6) , (7), Transitive property of equality (11)PABC=6/5*(AD+DE+AE) //(10), Distributive property of multiplication (12) PABC=6/5*PADE //(11), (9), Transitive property of equality (13) PABC/PADE=6/5 And so we have easily shown that the scale factor of similar triangles is the same for the perimeters.