answersLogoWhite

0

Let G be the cyclic group generated by x, say. Ten every elt of G is of the form x^a, for some a

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Movies & Television

Prove that a group of order 5 must be cyclic?

There's a theorem to the effect that every group of prime order is cyclic. Since 5 is prime, the assertion in the question follows from the said theorem.


Is every group whose order is less than or equal to 4 a cyclic group?

Yes. The only group of order 1 is the trivial group containing only the identity element. All groups of orders 2 or 3 are cyclic since 2 and 3 are both prime numbers. Therefore, any group of order less than or equal to four must be a cyclic group.


Prove that a group of order three is abelian?

By LaGrange's Thm., the order of an element of a group must divide the order of the group. Since 3 is prime, up to isomorphism, the only group of order three is {1,x,x^2} where x^3=1. Note that this is a finite cyclic group. Since all cyclic groups are abelian, because they can be modeled by addition mod an integer, the group of order 3 is abelian.


Let G be a cyclic group of order 8 then how many of the elements of G are generators of this group?

Four of them.


Why D2 and z12 are not isomorphic?

D2, the dihedral group of order 4, consists of rotations and reflections of a square, while Z12, the cyclic group of order 12, is generated by the addition of integers modulo 12. D2 is not cyclic, as it cannot be generated by a single element, whereas Z12 is cyclic, generated by 1. Furthermore, the structure of the groups differs: D2 has elements of order 2 (the reflections) and elements of order 4 (the rotations), while Z12 has elements of various orders that are consistent with a cyclic structure. Hence, their different algebraic structures confirm that D2 and Z12 are not isomorphic.

Related Questions

Every subgroup of a cyclic group is cyclic?

Yes, every subgroup of a cyclic group is cyclic because every subgroup is a group.


Is every abelian group is cyclic or not and why?

every abelian group is not cyclic. e.g, set of (Q,+) it is an abelian group but not cyclic.


Prove that a group of order 5 must be cyclic?

There's a theorem to the effect that every group of prime order is cyclic. Since 5 is prime, the assertion in the question follows from the said theorem.


Is every abelian group is cyclic or not?

No.


Is every finite abelian group is cyclic?

No, for instance the Klein group is finite and abelian but not cyclic. Even more groups can be found having this chariacteristic for instance Z9 x Z9 is abelian but not cyclic


Proof or Disprove 'If every proper subgroup of G is cyclic then G must be cyclic'?

No! Take the quaternion group Q_8.


A cyclic group of length 2 is called identity?

A cyclic group of order two looks like this.It has two elements e and x such that ex = xe = x and e2 = x2 = e.So it is clear how it relates to the identity.In a cyclic group of order 2, every element is its own inverse.


Is every group whose order is less than or equal to 4 a cyclic group?

Yes. The only group of order 1 is the trivial group containing only the identity element. All groups of orders 2 or 3 are cyclic since 2 and 3 are both prime numbers. Therefore, any group of order less than or equal to four must be a cyclic group.


Is it true that an infinite cyclic group may have 3 distinct generators?

A cyclic group, by definition, has only one generator. An example of an infinite cyclic group is the integers with addition. This group is generated by 1.


Is rational number is a cyclic group under addition?

No Q is not cyclic under addition.


Prove that a group of order three is abelian?

By LaGrange's Thm., the order of an element of a group must divide the order of the group. Since 3 is prime, up to isomorphism, the only group of order three is {1,x,x^2} where x^3=1. Note that this is a finite cyclic group. Since all cyclic groups are abelian, because they can be modeled by addition mod an integer, the group of order 3 is abelian.


What is cyclic and non cyclic?

Cyclic photophosphorylation is when the electron from the chlorophyll went through the electron transport chain and return back to the chlorophyll. Noncyclic photophosphorylation is when the electron from the chlorophyll doesn't return back but incorporated into NADPH.