It could be either. The answer depends on how many terms if any are between 48 and 192.
It is -148.
The numbers could be from the sequence with a(1) = -3 and the common ratio r = (-2)If so, thena(7) = -3*(-2)^6 = -3*64 = -192.Of course, it is entirely possible that the numbers do not form a geometric sequence but a polynomial sequence such asa(n) = (27*n^3 - 189*n^2 + 396*n - 240)/2 and if so, a(7) = 1266.
An arithmetic sequence is where a constant is added to the base case, and then added again until the proscribed limit is reached. An example is 1, 3, 5, 7, where the constant is 2 and the base case is 1. The constant can be negative, such as -4, base case 16, which leads to a descending sequence of 16 12 8 4 0 -4 -8...
No, it is 12.
12
The sequence 216 12 23 is neither arithmetic nor geometric.
It is neither.
No, the sequence 3, 6, 12, 24 is not an arithmetic sequence. In an arithmetic sequence, the difference between consecutive terms is constant. Here, the differences are 3 (6-3), 6 (12-6), and 12 (24-12), which are not the same. This sequence is actually a geometric sequence, as each term is multiplied by 2 to get the next term.
No, geometric, common ratio 2
The sequence 2, 3, 5, 8, 12 is neither arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. In this sequence, there is no constant difference or ratio between consecutive terms, so it does not fit the criteria for either type of sequence.
An arithmetic sequence is a series of numbers in which each term is obtained by adding a constant value, called the common difference, to the previous term. In contrast, a geometric sequence is formed by multiplying the previous term by a constant value, known as the common ratio. For example, in the arithmetic sequence 2, 5, 8, 11, the common difference is 3, while in the geometric sequence 3, 6, 12, 24, the common ratio is 2. Thus, the primary difference lies in how each term is generated: through addition for arithmetic and multiplication for geometric sequences.
What is the eighth term of the geometric sequence 3, 12, 48, 192, ... ?
The factor is 4. 12288/192 = 64 ie 4 cubed, so it is the next term but two, ie the seventh. (192, 768, 3072, 12288)
That series of numbers is a geometric progression. Each successive number is multiplied by 4. Therefore, after 12 x 4 = 48 comes 48 x 4 = 192, and after 192 comes 192 x 4 = 768.
Yes, that's what a geometric sequence is about.
tn = t1+(n-1)d -- for arithmetic tn = t1rn-1 -- for geometric
12, 6, 0, -6, ...