Example:-
What are the dimensions of a rectangle when its length is greater than its width by 4 cm and has an area of 96 square cm?
Let the length be x+4 and the width x:
length*width = area
(x+4)*x = 96 => x2+4x-96 = 0 => (x+12)(x-8) = 0 when factored
So: x = -12 or x = 8 the dimensions can't be negative
Solution: length = 12 cm and width = 8 cm
Check: 12*8 = 96 square cm
Chat with our AI personalities
In the graph of a quadratic equation, the plotted points form a parabola. This parabola usually intersects the X axis at two different points. Those two points are also the two solutions for the quadratic equation. Alternatively: Quadratic equations are formed by multiplying two linear equations together. Each of the linear equations has one solution - multiplying two together means that the solution for either is also a solution for the quadratic equation - hence you get two possible solutions for the quadratic unless both linear equations have exactly the same solution. Example: Two linear equations : x - a = 0 x - b = 0 Multiplied together: (x - a) ( x - b ) = 0 Either a or b is a solution to this quadratic equation. Hence most often you have two solutions but never more than two and always at least one solution.
The standard form of a quadratic equation is: ax^2 + bx + c = 0. Depending on the values of the constants (a, b, and c), a quadratic equation may have 2 real roots, one double roots, or no real roots.There are many "special cases" of quadratic equations.1. When a = 1, the equation is in the form: x^2 + bx + c = 0. Solving it becomes solving a popular puzzle: find 2 numbers knowing their sum (-b) and their product (c). If you use the new Diagonal Sum Method (Amazon e-book 2010), solving is fast and simple.Example: Solve x^2 + 33x - 108 = 0.Solution. Roots have opposite signs. Write factor pairs of c = -108. They are: (-1, 108),(-2, 54),(-3, 36)...This sum is -3 + 36 = 33 = -b. The 2 real roots are -3 and 36. There is no needs for factoring.2. Tips for solving 2 special cases of quadratic equations.a. When a + b + c = 0, one real root is (1) and the other is (c/a).Example: the equation 5x^2 - 7x + 2 = 0 has 2 real roots: 1 and 2/5b. When a - b + c = 0, one real roots is (-1) and the other is (-c/a)Example: the equation 6x^2 - 3x - 9 = 0 has 2 real roots: (-1) and (9/6).3. Quadratic equations that can be factored.The standard form of a quadratic equation is ax^2 + bx + c = 0. When the Discriminant D = b^2 - 4ac is a perfect square, this equation can be factored into 2 binomials in x: (mx + n)(px + q)= 0. Solving the quadratic equation results in solving these 2 binomials for x. Students should master how to use this factoring method instead of boringly using the quadratic formula.When a given quadratic equation can be factored, there are 2 best solving methods to choose:a. The "factoring ac method" (You Tube) that determines the values of the constants m, n, p, and q of the 2 above mentioned binomials in x.b. The Diagonal Sum Method (Amazon ebook 2010) that directly obtains the 2 real roots without factoring. It is also considered as "The c/a method", or the shortcut of the factoring method. See the article titled" Solving quadratic equations by the Diagonal Sum Method" on this website.4. Quadratic equations that have 2 roots in the form of 2 complex numbers.When the Discriminant D = b^2 - 4ac < 0, there are 2 roots in the form of 2 complex numbers.5. Some special forms of quadratic equations:- quadratic equations with parameters: x^2 + mx - 7 + 0 (m is a parameter)- bi-quadratic equations: x^4 - 5x^2 + 4 = 0- equations with rational expression: (ax + b)/(cx + d) = (ex + f)- equations with radical expressions.
Equations with an order of 2 (contains a value to the power of 2, i.e. x2). An example of a quadratic equation is: x2 + 10x + 7
It could be the solution to some quadratic inequalities: for example x2 + 2x - 3 > 0 whose solution is x < -3 or x > 1.
If the equations of the system are dependent equations, which represent the same line; therefore, every point on the line of a dependent equation represents a solution. Since there are an infinite number of points on a line, there is an infinite number of simultaneous solutions. For example, 3x + 2y = 8 6x + 4y = 16