Apparently that can't be solved with a finite number of so-called "elementary functions". You can get the beginning of the series expansion here:
http://www.wolframalpha.com/input/?i=integrate+x^x
Chat with our AI personalities
The integral of sec(x) with respect to x is ln|sec(x) + tan(x)| + C, where C is the constant of integration. This result can be derived using integration techniques such as substitution or integration by parts. The integral of sec(x) is a common integral in calculus and is often used in trigonometric integrals.
The integral of ln(2) is a constant multiple of x times the natural logarithm of 2, plus a constant of integration. In other words, the integral of ln(2) with respect to x is x * ln(2) + C, where C is the constant of integration. This integral represents the area under the curve of the natural logarithm of 2 function with respect to x.
-cos x + C
S 2/x d/x bring the constant 2 out in front of the sign of integration 2 S 1/x dx you should know the integration of 1/x 2*ln(x) + C
When you with respect to the x-axis then this is like saying with reference to the x-axis. You are using the x-axis as a guide.