It is impossible to answer the question without some information about V or t or what the equation is meant to represent.
X2 = k Take square root each side. X = (+/-) sqrt(k) ============
31 = 3-4k 31-3 = -4k 28 = -4k Divide both sides of the equation by -4 to find the value of k: k = -7
Using the discriminant the possible values of k are -9 or 9
Using the discriminant of b^2 -4ac = 0 the value of k works out as -2
K = 6
k equals 5.6
k is the variable.
I am supposing you are looking for k, in that case you add 4.05 to both sides of the equation to cancel out the 4.05 on the k side, making the equation k = 10.25
For the equation x2- 10x - k equals 0, you can solve this by knowing that if there is only one solution then the discriminant b2 - 4ac must be equal to 0. In this equation, a is 1, b is 10 and c is k This equation becomes 100 - 4k equals 0, and k is 25.
Well, isn't that a happy little math problem we have here? To find out what k equals, we can simply subtract 5.6 from both sides of the equation. This will leave us with k equals 4.4, creating a beautiful balance in our equation. Just like painting a serene landscape, sometimes all it takes is a few gentle brushstrokes to reveal the hidden beauty within.
p = k/v or pv = k k is a constant p is pressure v is volume
k = sqrt(160) = 12.6
It is an equation. Taking it step by step: 37 - k = 17 -k = 17 - 37 -k = -20 k = 20
T/oC = T/K - 273.15
You cannot go beyond x = k unless you know the value of k. And in that case, the equation is solved so there is nothing further to do!
The equation representing direct variation can be expressed as ( y = kx ), where ( k ) is the constant of variation. To find ( k ), we can use the given values: when ( x = 0.4 ), ( y = 0.8 ). Substituting these values into the equation gives ( 0.8 = k(0.4) ), leading to ( k = 2 ). Thus, the equation of variation is ( y = 2x ).
It is a linear equation in the variable r.