Probably means 3 (as in 3dimensional).
(Bad terminology on maths' part it means a non-2d graph but 3d is still planar, just in 3 different dimensions)
n-1
If all the vertices and edges of a graph A are in graph B then graph A is a sub graph of B.
-1
It is -5.
vertex
No, the complete graph of 5 vertices is non planar. because we cant make any such complete graph which draw without cross over the edges . if there exist any crossing with respect to edges then the graph is non planar.Note:- a graph which contain minimum one edge from one vertex to another is called as complete graph...
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other.
n-1
A minimum edge cover in graph theory is a set of edges that covers all the vertices in a graph with the fewest number of edges possible. It is significant because it helps identify the smallest number of edges needed to connect all the vertices in a graph. This impacts the overall structure of a graph by showing the essential connections between vertices and highlighting the relationships within the graph.
The minimum cut in a graph is the smallest number of edges that need to be removed in order to disconnect the graph into two separate components. It is calculated using algorithms such as Ford-Fulkerson or Karger's algorithm, which iteratively find the cut with the fewest edges.
No.No.No.No.
A minimum cut in a graph is a set of edges that, when removed, disconnects the graph into two separate components. An example of a minimum cut in a graph is shown in the image below: Image of a graph with a set of edges highlighted that, when removed, disconnect the graph into two separate components
To determine the minimum cut in a graph, one can use algorithms such as Ford-Fulkerson or Karger's algorithm. These algorithms help identify the smallest set of edges that, when removed, disconnect the graph into two separate components. The minimum cut represents the fewest number of edges that need to be cut to separate the graph into two distinct parts.
In graph theory, a minimum cut is the smallest number of edges that need to be removed to disconnect a graph. It is calculated using algorithms like Ford-Fulkerson or Karger's algorithm, which find the cut that minimizes the total weight of the removed edges.
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other.A planar graph already drawn in the plane without edge intersections is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point in 2D space, and from every edge to a plane curve, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Plane graphs can be encoded by combinatorial maps.Example of Planner graphButterfly Graph.
n-1 (o-o-o-o-o)
The term "cyclic graph" is not well-defined. If you mean a graph that is not acyclic, then the answer is 3. That would be the union of a complete graph on 3 vertices and any number of isolated vertices. If you mean a graph that is (isomorphic to) a cycle, then the answer is n. If you are really asking the maximum number of edges, then that would be the triangle numbers such as n (n-1) /2.