There are infinitely many possible solutions to such a question. The simplest quadratic is Un = 4n2 + 9
It is 4n+5 and so the next term will be 25
To find the nth term of a sequence, we first need to determine the pattern or rule that governs the sequence. In this case, the sequence appears to be increasing by adding consecutive odd numbers: 3, 6, 9, 12, and so on. Therefore, the nth term formula for this sequence is Tn = 3n^2 + n. So, the nth term for the sequence 4, 7, 13, 22, 34 is Tn = 3n^2 + n.
Oh honey, looks like we're counting down by 4 each time. So, if we keep that pattern going, the next number would be 5. So, the nth term in this sequence is 21 - 4n, where n is the position of the term in the sequence.
Appears we are adding 6 each time. So the nth term is a_(n-1)+6 where n-1 is a subscript of a.
The nth term is 6n+1 and so the next term will be 31
The nth term is: 5-6n
The nth term of a sequence is the general formula for a sequence. The nth term of this particular sequence would be n+3. This is because each step in the sequence is plus 3 higher than the previous step.
The nth term in the sequence -5, -7, -9, -11, -13 can be represented by the formula a_n = -2n - 3, where n is the position of the term in the sequence. In this case, the common difference between each term is -2, indicating a linear sequence. By substituting the position n into the formula, you can find the value of the nth term in the sequence.
The given sequence is an arithmetic sequence with a common difference of 6. To find the nth term of this sequence, we can use the following formula: nth term = first term + (n - 1) x common difference where n is the position of the term we want to find. In this sequence, the first term is 1 and the common difference is 6. Substituting these values into the formula, we get: nth term = 1 + (n - 1) x 6 nth term = 1 + 6n - 6 nth term = 6n - 5 Therefore, the nth term of the sequence 1, 7, 13, 19 is given by the formula 6n - 5.
The given sequence is an arithmetic sequence where each term increases by 4. The first term (a) is 13, and the common difference (d) is 4. The nth term can be found using the formula: ( a_n = a + (n-1)d ). Therefore, the nth term is ( a_n = 13 + (n-1) \cdot 4 = 4n + 9 ).
Willies
It is 4n+5 and so the next term will be 25
The given sequence is an arithmetic sequence with a common difference of 4 between each term. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term (a) is -3, the common difference (d) is 4, and the term number (n) is the position in the sequence. So, the nth term of the given sequence is -3 + (n-1)4 = 4n - 7.
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.