-8
It is an equation of a straight line.
it should actually look like this- 5x - y = 11 sorry
Plug both points into the equation of a line, y =m*x + b and then solve the system of equations for m and b to get equation of the line through the points.
To find the equation of a line passing through two points, we first calculate the slope using the formula (y2 - y1) / (x2 - x1). Given the points (1, 11) and (-2, 2), the slope is (2 - 11) / (-2 - 1) = -9 / -3 = 3. Next, we use the point-slope form of a linear equation, y - y1 = m(x - x1), where m is the slope and (x1, y1) is a point on the line. Substituting (1, 11) as the point and 3 as the slope, we get the equation y - 11 = 3(x - 1). Simplifying, we get y = 3x + 8 as the equation of the line.
Points: (7, 0) and (0, 11) Slope: 0-11/7-0 = -11/7 Equation: y-0 = -11/7(x-7) => 7y = -11x+77 Equation: y-11 = -11/7(x-0) => 7y = -11x+77
11
-11
11
Without an equality sign the given expression can't be considered to be a straight line equation.
(-2, 11)(-3, 14)(2, -1)
If you mean y = 11x+2.5 then the slope is 11 and the y intercept is 2.5
y = 11x + 5 The slope/gradient of this equation is 11. The slope/gradient can easily been seen in a linear equation: it is simply the co-efficient of x
It is an equation of a straight line.
The equation of a parallel line is of the form 2x - y = c for some c. (-3, -11) is on this lime so 2*(-3) - (-11) = c -6 + 11 = c so that c = 5 and therefore, the equation is 2x - y = 5
To find the equation of the line of best fit for the given data points (2, 2), (5, 8), (7, 10), (9, 11), and (11, 13), we can use the least squares method. The calculated slope (m) is approximately 0.85 and the y-intercept (b) is around 0.79. Thus, the equation of the line of best fit is approximately ( y = 0.85x + 0.79 ).
Given points: (6, 11), (3, 10)Find: the equation of the line that passes through the given points Solution: First, wee need to find the slope m of the line, and then we can use one of the given points in the point-slope form of the equation of a line. After that you can transform it into the general form of the equation of a line. Let (x1, y1) = (3, 10), and (x2, y2) = (6, 11) slope = m = (y2 - y1)/(x2 - x1) = (11 - 10)/(6 - 3) = 1/3 (y - y1) = m(x - x1)y - 10 = (1/3)(x - 3)y - 10 = (1/3)x - 1y - 10 + 10 - (1/3)x = (1/3)x - (1/3)x + 10 - 1-(1/3)x + y = 9 which is the general form of the required line.
it should actually look like this- 5x - y = 11 sorry