y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx
given the identity sin(x+y)=sinx cosy + siny cosxsin2x = 2 sinx cosx andsin(2(x)+x) = sin 2x cos x + sinx cos 2xusing the last two identities givessin3x= 2 sinx cosx cosx + sinx cos2xfactoring the sinx we havesin3x = sinx(2cosx cosx+cos2x)which satisfies the requirement.However, we can simplify further since cos 2x = cosx cosx - sinx sinx (a well known identity)sin3x = sinx (2cosx cosx +cosx cosx - sinx sinx)so sin3x= sinx(3cosx cosx - sinx sinx)or sin 3x = 3.cos²x.sinx - sin³x* * * * *Good, but not good enough. The answer was required in terms of sin, not a mixture of sinx and cosx. Easily recitified, though, since cos²x = 1 - sin²xTherefore sin3x = 3*(1-sin²x)*sinx - sin³x= 3sinx - 3sin³x - sin³x= 3sinx - 4sin³x
sin(x) = sqrt[ 1 - cos2(x) ]
tanx=2cscx sinx/cosx=2/sinx sin2x/cosx=2 sin2x=2cosx 1-cos2x=2cosx 0=cos2x+2cosx-1 Quadratic formula: cosx=(-2±√(2^2+4))/2 cosx=(-2±√8)/2 cosx=(-2±2√2)/2 cosx=-1±√2 cosx=approximately -2.41 or approximately 0.41. Since the range of the cosine function is [-1,1], only approx. 0.41 works. So: cosx= approx. 0.41 Need calculator now (I went as far as I could without one!) x=approx 1.148
For simplicity's sake, X represent theta. This is the original problem: sin2x+ cosX = cos2X + sinX This handy-dandy property is key for all you trig fanatics: sin2x+ cos2x = 1 With this basic property, you can figure out that sin2 x=1-cos2x and cos2x= 1-sin2x So we can change the original problem to: 1-cos2x+cosx = 1-sin2X + sinX -cos2x + cosx =-sin2x + sinX Basic logic tells you that one of two things are happening. sin2x is equal to sinx AND cos2x is equal to cosx. The only two numbers that are the same squared as they are to the first power are 1 and 0. X could equal 0, which has a cosine of 1 and a sine of 0, or it could equal pi/2, which has a cosine of 0 and a sine of 1. The other possibility whatever x (or theta) is, it's sine is equal to its cosine. This happens twice on the unit circle, once at pi/4 and once at 5pi/4. If you're solving for all possible values for x and not just a set range on the unit circle, then the final solution is: x=0+2pin x=pi/2+2pin x= pi/4 +2pin x=5pi/4+2pin (note that n is a variable)
2
(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx
From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.
to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))
sinx*secx ( secx= 1/cos ) sinx*(1/cosx) sinx/cosx=tanx tanx=tanx
y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx
0
You will have to bear with the angle being represented by x because this browser will not allow characters from other alphabets!sin^2x + cos^2x = 1=> sin^2x = 1 - cos^x = (1 + cosx)(1 - cosx)Divide both sides by sinx (assuming that sinx is not zero).=> sinx = (1 + cosx)(1 - cosx)/sinxDivide both sides by (1 - cosx)=> sinx/(1 - cosx) = (1 + cosx)/sinx=> sinx/(1 - cosx) - (1 + cosx)/sinx = 0
(1 - csc2x)/(sinx*cotx) = -cot2x/sinxcotx = -cotx/sinx = -(cosx/sinx)/sinx = -cosx/sin2x = -cosx/(1-cos2x) = cosx/(cos2x - 1)
secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = 1 + sinx/cosx, andsin/cos = tanx, therefore1/cosx + tanx = 1 + tanx, therefore1/cosx = 1, therfore1 = cosx.So, therfore, it is not neccesarily true.But if you meansecx plus 1 divided by cotx equals (1 plus sinx) divided by cosx(this is probably what you mean) Let's start over!secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = (1+sinx)/cosx therefore1/cosx + tanx = 1/cosx + sinx/cosxsinx/cosx = tanx therfore1/cosx + tanx = 1/cosx + tanxDo you think this is correct? Subtract both sides by 1/cosx + tanx:0 = 0So, therefore, this is correct!(BTW, I'm in Grade 6! :P)
given the identity sin(x+y)=sinx cosy + siny cosxsin2x = 2 sinx cosx andsin(2(x)+x) = sin 2x cos x + sinx cos 2xusing the last two identities givessin3x= 2 sinx cosx cosx + sinx cos2xfactoring the sinx we havesin3x = sinx(2cosx cosx+cos2x)which satisfies the requirement.However, we can simplify further since cos 2x = cosx cosx - sinx sinx (a well known identity)sin3x = sinx (2cosx cosx +cosx cosx - sinx sinx)so sin3x= sinx(3cosx cosx - sinx sinx)or sin 3x = 3.cos²x.sinx - sin³x* * * * *Good, but not good enough. The answer was required in terms of sin, not a mixture of sinx and cosx. Easily recitified, though, since cos²x = 1 - sin²xTherefore sin3x = 3*(1-sin²x)*sinx - sin³x= 3sinx - 3sin³x - sin³x= 3sinx - 4sin³x
(1 + tanx)/sinxMultiply by sinx/sinxsinx + tanxsinxDivide by sin2x (1/sin2x) = cscxcscx + tan(x)csc(x)tanx = sinx/cosx and cscx = 1/sinxcscx + (sinx/cosx)(1/sinx)sinx cancels outcscx + 1/cosx1/cosx = secxcscx + secx