You can invert almost any number by dividing 1 by that number. Zero is an exception since division by zero yields the equivalent of infinity, which is difficult to deal with by the usual rules of arithmetic. We cannot really know what the product of zero and infinity is. All other real numbers can be inverted.
All rational numbers, with the exception of zero (0), have a multiplicative inverse. In fact, all real numbers (again, except for zero) have multiplicative inverses, though the inverses of irrational numbers are themselves irrational. Even imaginary numbers have multiplicative inverses (the multiplicative inverse of 5i is -0.2i - as you can see the inverse itself is also imaginary). Even complex numbers (the sum of an imaginary number and a real number) have multiplicative inverses (the inverse of [5i + 2] is [-5i/29 + 2/29] - similar to irrational and imaginary numbers, the inverse of a complex number is itself complex). The onlynumber, in any set of numbers, that does not have a multiplicative inverse is zero.
The same as for a real number: 1 divided by the number.For example, the multiplicative inverse (or reciprocal) of 2i is 1 / 2i = -(1/2)i.
Rational numbers and Real Numbers. The multiplicative inverses of integers are not integers.
So if you have a number z = a + bi. Then how to find 1 divided by z. The way to figure this is to get the denominator as a pure real number. Multiplying the numerator and the denominator by the complex conjugate {a - bi} will result in a pure real denominator.(a - bi)(a + bi) = a² + abi - abi - (bi)² = a² + b². So the multiplicative inverse is(a - bi)/(a² + b²)
It is 1, as it is for all complex numbers - which includes real numbers.
The only real (or complex) number which does not have a multiplicative inverse is 0. There is nothing you can multiply by 0 to get 1.
All rational numbers, with the exception of zero (0), have a multiplicative inverse. In fact, all real numbers (again, except for zero) have multiplicative inverses, though the inverses of irrational numbers are themselves irrational. Even imaginary numbers have multiplicative inverses (the multiplicative inverse of 5i is -0.2i - as you can see the inverse itself is also imaginary). Even complex numbers (the sum of an imaginary number and a real number) have multiplicative inverses (the inverse of [5i + 2] is [-5i/29 + 2/29] - similar to irrational and imaginary numbers, the inverse of a complex number is itself complex). The onlynumber, in any set of numbers, that does not have a multiplicative inverse is zero.
All real numbers, except 0, have a multiplicative inverse. For any real x, (x not = 0), there exists a real number y such that x*y = 1. This y is denoted by 1/x.
A multiplicative inverse for 2 numbers exists if the 2 numbers are coprime, i.e. their greatest common divisor (or gcd) is 1. However, if your question refers to just a singular number, virtually all real numbers (with the exception of zero) have a multiplicative inverse.
Every non zero number has a multiplicative inverse, which is 1 divided by that number. This stands for both real and complex numbers. This can be proved by letting x=some non zero number. x*(1/x)=x/x=1, therefore the multiplicative inverse of x is 1/x.
For every real number, x, which is not zero, there exists a real number x' such that x * x' = x' * x = 1, the multiplicative identity.
On the set of all real numbers ZERO has no multiplicative inverse. For other sets there may be other numbers too, so please define your set!
Yes. That's basically the definition of a multiplicative inverse.Also, this doesn't only apply to fractions - it applies to any real numbers.
No, it is not true.
1
That number is zero. It has no inverse because there is no number that you can multiply by zero to get one; to put this another way; The equation 0x= 1 has no solution, bacause 0x = 0 for all real numbers x.
The same as for a real number: 1 divided by the number.For example, the multiplicative inverse (or reciprocal) of 2i is 1 / 2i = -(1/2)i.