answersLogoWhite

0


Best Answer

No, zero does not. Multiplicative inverse, also known as reciprocal, is a number which multiplied by the original number gives 1 for the answer. Zero, multiplied by any numberequals zero. Infinity is not an actual number that you can multiply by. These are important concepts.

User Avatar

Wiki User

โˆ™ 2014-08-31 13:08:56
This answer is:
User Avatar
Study guides

hio

โžก๏ธ
See all cards
3.12
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
132 Reviews

Add your answer:

Earn +20 pts
Q: Does every real numbers have a multiplicative inverse?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Basic Math

What are the elements in rational numbers having multiplicative inverse?

All rational numbers, with the exception of zero (0), have a multiplicative inverse. In fact, all real numbers (again, except for zero) have multiplicative inverses, though the inverses of irrational numbers are themselves irrational. Even imaginary numbers have multiplicative inverses (the multiplicative inverse of 5i is -0.2i - as you can see the inverse itself is also imaginary). Even complex numbers (the sum of an imaginary number and a real number) have multiplicative inverses (the inverse of [5i + 2] is [-5i/29 + 2/29] - similar to irrational and imaginary numbers, the inverse of a complex number is itself complex). The onlynumber, in any set of numbers, that does not have a multiplicative inverse is zero.


What is a multiplicative inverse of an imaginary number?

The same as for a real number: 1 divided by the number.For example, the multiplicative inverse (or reciprocal) of 2i is 1 / 2i = -(1/2)i.


Which of the following sets of numbers contains multiplicative inverses for all its elements Positive Integers Integers Rational Numbers Real Numbers?

Rational numbers and Real Numbers. The multiplicative inverses of integers are not integers.


What is the Multiplicative Identity for rational numbers?

It is 1, as it is for all complex numbers - which includes real numbers.


What is the Multiplicative inverse formula of complex numbers?

So if you have a number z = a + bi. Then how to find 1 divided by z. The way to figure this is to get the denominator as a pure real number. Multiplying the numerator and the denominator by the complex conjugate {a - bi} will result in a pure real denominator.(a - bi)(a + bi) = a² + abi - abi - (bi)² = a² + b². So the multiplicative inverse is(a - bi)/(a² + b²)

Related questions

Why doesn't every real number have a multiplicative inverse?

The only real (or complex) number which does not have a multiplicative inverse is 0. There is nothing you can multiply by 0 to get 1.


What are the elements in rational numbers having multiplicative inverse?

All rational numbers, with the exception of zero (0), have a multiplicative inverse. In fact, all real numbers (again, except for zero) have multiplicative inverses, though the inverses of irrational numbers are themselves irrational. Even imaginary numbers have multiplicative inverses (the multiplicative inverse of 5i is -0.2i - as you can see the inverse itself is also imaginary). Even complex numbers (the sum of an imaginary number and a real number) have multiplicative inverses (the inverse of [5i + 2] is [-5i/29 + 2/29] - similar to irrational and imaginary numbers, the inverse of a complex number is itself complex). The onlynumber, in any set of numbers, that does not have a multiplicative inverse is zero.


Do real numbers have a multiplicative inverse?

All real numbers, except 0, have a multiplicative inverse. For any real x, (x not = 0), there exists a real number y such that x*y = 1. This y is denoted by 1/x.


What number does not have a multiplicative inverse?

A multiplicative inverse for 2 numbers exists if the 2 numbers are coprime, i.e. their greatest common divisor (or gcd) is 1. However, if your question refers to just a singular number, virtually all real numbers (with the exception of zero) have a multiplicative inverse.


Does every non-zero number have a multiplicative inverse?

Every non zero number has a multiplicative inverse, which is 1 divided by that number. This stands for both real and complex numbers. This can be proved by letting x=some non zero number. x*(1/x)=x/x=1, therefore the multiplicative inverse of x is 1/x.


What an multiplicative inverse property and real number?

For every real number, x, which is not zero, there exists a real number x' such that x * x' = x' * x = 1, the multiplicative identity.


What number has no multiple inverse?

On the set of all real numbers ZERO has no multiplicative inverse. For other sets there may be other numbers too, so please define your set!


Is it true that any real number has a multiplicative inverse?

No, it is not true.


What is the difference between additive and multiplicative inverse?

The additive inverse is the inverse under addition; the multiplicative inverse is the inverse under multiplication. For example, the additive inverse of any real or complex number is its negative: the inverse of 3 is -3 and vice versa. The multiplicative inverse of a number other than 0 (which has no such inverse) is its reciprocal: the inverse of 2 is 1/2, and vice versa. Adding a number and its additive inverse gives the additive identity, 0. Multiplying a number by its multiplicative inverse gives the multiplicative identity, 1.


Is the product of a fraction and its multiplicative inverse 1?

Yes. That's basically the definition of a multiplicative inverse.Also, this doesn't only apply to fractions - it applies to any real numbers.


What is the product of any nonzero real number and its multiplicative inverse?

1


Which real number does not have a multiplicative inverse and why?

That number is zero. It has no inverse because there is no number that you can multiply by zero to get one; to put this another way; The equation 0x= 1 has no solution, bacause 0x = 0 for all real numbers x.

People also asked

Why is the square of a number always a positive number?

View results