The domain could be the real numbers, in which case, the range would be the non-negative real numbers.
The domain of a function pertains to all the x values The range of a function pertains to all the y values So domain and range do not get confused, this can be easily remembered by the order of the how the first letter of the word appears in the English alphabet. d, domain, goes before r, range x goes before y domain = x values range = y values ill try to add to the previous writer. previously, he wrote what the domain and range are for easier functions, but not how to determine them. more generally, what the domain is, is what you can put into a function, which in simpler cases, is jus x. to find what you can put in, it helps to find what you cant put in for x, meaning, where is the graph of the function discontinuous. for example, if we look at the function f(x)=1/(1-x) if we put 1 in for x, then the denominator goes to zero and the function is discontinuous at that x value, therefore 1 will not be included in the domain, but everything else will be included since there are no other disconinuities. the domain will end up looking like this- (-infinity,1), (1,infinity). now for the range, all you have to do is find what you can get out of the function from what you can put in, which can usually be done by putting the values you see for the domain in. putting negative infinity in for x in f(x)=1/(1-x) you get zero and putting one in you get infinty. putting it together you get (-infinity,0), (0,infinity) for your range. p.s. as i stated before, more generally, your domain is more so what you put into your function, so it is not always x, for example, in the case of a function of 2 variables such as f(x,y), what you can put in for both x and y will make up your domain, not just x, and y will most certainly not be your range, rather it will be the values of f(x,y).
The domain is what you choose it to be. You could, for example, choose the domain to be [3, 6.5] If the domain is the real numbers, the range is [-12.25, ∞).
The domain of the function f (x) = square root of (x - 2) plus 4 is Domain [2, ∞)
The domain of f(x)=3sin(2x) is all real numbers ----Any number can be input into this function and receive a valid output The range of f(x)=3sin(2x) is [-3,3] ----The range of y=sin(x) is [-1,1] frequency modulation, which happens when the argument of a sine function is modified, does not affect the range of a cosine or sine function, so the range of y=sin(2x) is also [-1,1]. Amplitude modulation, which happens when the entire function is multiplied by a numerical constant, does affect the range. If any number put into y=sin(2x) will output a maximum of 1, the most an input can cause in y=3sin(2x) will be 3 times the maximum of y=sin(2x), and the same for the minimums, so the range of y=3sin(2x) is from -3 to 3. If you would like a more complete explanation of the concepts underlying domain and range of functions, message me and I can more completely explain them.
I assume the question is about the range of a function f. First, determine the domain of the function f. This is the set of all inputs. Use this information to find all the output values of f: that is the range. In most cases, you will not have to evaluate f for each and every input: the nature of f will help you.
The range of F(x)dividing x depends on the domain of x and on the function F.
The function is a simple linear function and so its nature does not limit the domain or range in any way. So the domain and range can be the whole of the real numbers. If the domain is a proper subset of that then the range must be defined accordingly. Similarly, if the range is known then the appropriate domain needs to be defined.
A function is a mapping from one set to another. It may be many-to-one or one-to-one. The first of these sets is the domain and the second set is the range. Thus, for each value x in the domain, the function allocates the value f(x) which is a value in the range. For example, if the function is f(x) = x^2 and the domain is the integers in the interval [-2, 2], then the range is the set [0, 1, 4].
The domain could be the real numbers, in which case, the range would be the non-negative real numbers.
Quite simply, the domain is the input and the range is the output of a function. If your using a typical X-Y axis graph, it may be useful to view the X axis as where the domain lies. The Y axis is where the range lies. Y= f(x) or Range = f(domain)
find the domain and range of the function f(x)=x/2-3x
It is 24, 72, -60.
x is a letter often used as a variable. It can be in the range or the domain. However, in elementary algebra, the variable x is most often used for the domain and f(x) =y for the range.
You would have been given a function for f(x) and another function for g(x). When you want to find f(g(x)), you put the function for g(x) wherever x occurs in f(x). Example: f(x)=3x+2 g(x)=x^2 f(g(x))=3(x^2)+2 I'm not sure what you mean by address domain and range. They depend on what functions you're given.
The domain of a function pertains to all the x values The range of a function pertains to all the y values So domain and range do not get confused, this can be easily remembered by the order of the how the first letter of the word appears in the English alphabet. d, domain, goes before r, range x goes before y domain = x values range = y values ill try to add to the previous writer. previously, he wrote what the domain and range are for easier functions, but not how to determine them. more generally, what the domain is, is what you can put into a function, which in simpler cases, is jus x. to find what you can put in, it helps to find what you cant put in for x, meaning, where is the graph of the function discontinuous. for example, if we look at the function f(x)=1/(1-x) if we put 1 in for x, then the denominator goes to zero and the function is discontinuous at that x value, therefore 1 will not be included in the domain, but everything else will be included since there are no other disconinuities. the domain will end up looking like this- (-infinity,1), (1,infinity). now for the range, all you have to do is find what you can get out of the function from what you can put in, which can usually be done by putting the values you see for the domain in. putting negative infinity in for x in f(x)=1/(1-x) you get zero and putting one in you get infinty. putting it together you get (-infinity,0), (0,infinity) for your range. p.s. as i stated before, more generally, your domain is more so what you put into your function, so it is not always x, for example, in the case of a function of 2 variables such as f(x,y), what you can put in for both x and y will make up your domain, not just x, and y will most certainly not be your range, rather it will be the values of f(x,y).
A quadratic function: f(x) = ax2 + bx + c = 0, where a ≠ 0. Domain: {x| x is a real number}, or in the interval notation, (-∞, ∞). Range: If a > 0, {y| y ≥ f(-b/2a), the y-coordinate of the vertex} or [f(-b/2a), ∞). If a < 0, {y| y ≤ f(-b/2a), the y-coordinate of the vertex} or (-∞, f(-b/2a)]. * * * * * Alternative answer: The domain is anything you chose it to be. For example, the integers between 2.5 and 4.7 (ie 3 and 4) and the real numbers between 4.8 and 5.0. Then the range would be the values of f(x) which corresponded to the values of x in the domain.