e 2x = (1/2) e 2x + C ============
The power law of indices says: (x^a)^b = x^(ab) = x^(ba) = (x^b)^a → e^(2x) = (e^x)² but e^x = 2 → e^(2x) = (e^x)² = 2² = 4
The definition of the natural log ln of a number is the power that you have to raise e to in order to get that number. Therefore, ln(2x+3) is the power you have to raise e to to get 2x + 3.
-2y square exp power -2x-1
e2x=ex^2 basically means that x2=2x, in which case x2-2x=0, x = 0, 2. I don't think that's what the question meant. It could mean: e2x=(ex)2 . Which comes from one of the rules of exponents. Basically, look at it this way: Take the natural log of both sides: ln e2x= ln(ex)2 From rules of logs: (2x) ln e = (2) ln ex 2x ln e = (2) (x) ln e 2x = (2)(x)
int[e(2X) +e(- 2X)] integrate term by term 1/22 e(2X) - 1/22 e(- 2X) + C (1/4)e(2X) - (1/4)e(- 2X) + C ====================
e 2x = (1/2) e 2x + C ============
2x
= inegrate (e-2x) / derivate -2x = (e-2x)/-2-> integral esomething = esomething , that's why (e-2x) don't change-> (-2x)' = -2
The integral of e-2x is -1/2*e-2x + c but I am not sure what "for x0" in the question means.
e-2x^2 cannot be integrated, only approximated unless there is an additional x attached to the front of the e, otherwise this function is not integrable Actually, it can be integrated, but it requires multivariable calculus and a conversion from cartesian to polar form to do so.
matter equels y to the power x plus e
e^x/1-e^x
The power law of indices says: (x^a)^b = x^(ab) = x^(ba) = (x^b)^a → e^(2x) = (e^x)² but e^x = 2 → e^(2x) = (e^x)² = 2² = 4
To integrate e^(-2x)dx, you need to take a u substitution. u=-2x du=-2dx Since the original integral does not have a -2 in it, you need to divide to get the dx alone. -(1/2)du=dx Since the integral of e^x is still e^x, you get: y = -(1/2)e^(-2x) Well, that was one method. I usually solve easier functions like this by thinking how the function looked like before it was differentiated. I let f(x) stand for the given function and F(x) stand for the primitive function; the function we had before differentiation (the integrated function). f(x)= e-2x <-- our given function F(x)= e-2x/-2 <-- our integrated function Evidence: F'(x)= -2e-2x/-2 = e-2x = f(x) Q.E.D It's as simple as that.
The definition of the natural log ln of a number is the power that you have to raise e to in order to get that number. Therefore, ln(2x+3) is the power you have to raise e to to get 2x + 3.
you need to know natural logarithms3e to the 2x-1 power = 8(2x-1) ln e = ln (8/3)ln e = 1(2x-1) = ln(8/3) = 0.982x = 1.98x = 0.99