Using chain rule:
integral of cos2x dx
= 1/2 * sin2x + C
Chat with our AI personalities
First we look at the double-angle identity of cos2x. We know that: cos2x = cos^2x - sin^2x cos2x = [1-sin^2x] - sin^2x.............. (From sin^2x + cos^2x = 1, cos^2x = 1 - sin^2x) Therefore: cos2x = 1 - 2sin^2x 2sin^2x = 1 - cos2x sin^2x = 1/2(1-cos2x) sin^2x = 1/2 - cos2x/2 And intergrating, we get: x/2 - sin2x/4 + c...................(Integral of cos2x = 1/2sin2x; and c is a constant)
∫sin2x dxUse the identity sin2x = ½ - ½(cos2x)∫[½ - ½(cos2x)] dx = ∫½ dx - ∫½(cos2x) dxLet's split it up into ∫½ dx and ∫½(cos2x) dx∫½ dx = x/2 (we'll put the constant in at the end)∫½(cos2x) dx (Use u substitution with u=2x and du = 2 dx)∫cosu ¼du = ¼∫cosu du = ¼sinu + c = ¼sin2x (remember to resubstitute)Subtract the two parts and add a constantx/2 - ¼(sin2x) + cThis is also equivalent to: ½(x - sinxcosx) + c
You can look up "trigonometric identities" in Wikipedia.Cos(2x), among other things, is equal to (cos x)^2 - (sin x)^2 If you meant cos squared x, or (cos x)^2, that is equal to (1 + cos(2x))/2
No; sin2x = 2 cosx sinx
∫ xsin(2x) dx = (-1/2)xcos2x + (1/4)sin2x You get this by using Integration by Parts. An integral in the form ∫udv can be written as uv-∫vdu In the case of your problem u=x, du=1, dv=sin2x, v=(-1/2)cos2x <--You get v by integrating dv Using the formula ∫udv = uv- ∫vdu and by plugging in what has been defined above you get ∫xsin(2x)dx = (-1/2)xcos2x - ∫(-1/2)cos2x(1) By integrating ∫(-1/2)cos2x, you get (-1/4)sin2x. When you plug that back in, you get ∫xsin2xdx=(-1/2)xcos2x-(-1/4)sin2x or just simply ∫xsin(2x)dx = (-1/2)xcos(2x) + (1/4)sin(2x)