logx +7=1+log(x-1) 6=log(x-1)-logx 6=log[(x-1)/x] 10^6=(x-1)/x 1,000,000x=x-1 999,999x=-1 x=-1/999,999
Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.
Well, firstly, the derivative of a function simply refers to slope. Usually we say that the function is not differentiable at a point.Say you have a function such as this:f(x)=|x|Another way to represent that would be as a piece-wise function:g(x) = { -x for x= 0The problem arises at the specific point x=0. If you look at the slope--the change in the function--from the left and right of x, you notice that it is different, negative 1 and positive 1. So, we can say that the function is not differentiable at x=0 because of that sudden change.There are however, a few functions that are nowhere differentiable. One example is the Weirstrass function. The even more ironic thing about this function is that it is continuous everywhere! Since this function is not differentiable anywhere, many might call it a non-differentiable function.There are absolutely other examples.
The browser which is used for posting questions is almost totally useless for mathematical questions since it blocks most symbols.I am assuming that your question is about log base 3 of (x plus 1) plus log base 2 of (x-1).{log[(x + 1)^log2} + {log[(x - 1)^log3}/log(3^log2) where all the logs are to the same base - whichever you want. The denominator can also be written as log(3^log2)This can be simplified (?) to log{[(x + 1)^log2*(x - 1)^log3}/log(3^log2).As mentioned above, the expression can be to any base and so the expression becomesin base 2: log{[(x + 1)*(x - 1)^log3}/log(3) andin base 3: log{[(x + 1)^log2*(x - 1)}/log(2)
y = ln (x) dy/dx = 1/x
Yes. It's 1.
Definition: A function f is differentiable at a if f'(a) exists. it is differentiable on an open interval (a, b) [or (a, ∞) or (-∞, a) or (-∞, ∞)]if it is differentiable at every number in the interval.Example: Where is the function f(x) = |x| differentiable?Answer:1. f is differentiable for any x > 0 and x < 0.2. f is not differentiable at x = 0.That's mean that the curve y = |x| has not a tangent at (0, 0).Thus, both continiuty and differentiability are desirable properties for a function to have. These properties are related.Theorem: If f is differentiable at a, then f is continuous at a.The converse theorem is false, that is, there are functions that are continuous but not differentiable. (As we saw at the example above. f(x) = |x| is contionuous at 0, but is not differentiable at 0).The three ways for f not to be differentiable at aare:a) if the graph of a function f has a "corner" or a "kink" in it,b) a discontinuity,c) a vertical tangent
logx +7=1+log(x-1) 6=log(x-1)-logx 6=log[(x-1)/x] 10^6=(x-1)/x 1,000,000x=x-1 999,999x=-1 x=-1/999,999
with something called logarithms. So 1 = (1 + x)^5 log 1 = log ((1+x)^5) log 1 = 5 x log (1 +x) but log 1 = 0 therefore 0 = 5 x log(1+x) divide both sides by 5 and you get 0 = log (1+x) we know that log 1 = 0, therefore 1+ x = 1 and so x = 0
Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.
Well, firstly, the derivative of a function simply refers to slope. Usually we say that the function is not differentiable at a point.Say you have a function such as this:f(x)=|x|Another way to represent that would be as a piece-wise function:g(x) = { -x for x= 0The problem arises at the specific point x=0. If you look at the slope--the change in the function--from the left and right of x, you notice that it is different, negative 1 and positive 1. So, we can say that the function is not differentiable at x=0 because of that sudden change.There are however, a few functions that are nowhere differentiable. One example is the Weirstrass function. The even more ironic thing about this function is that it is continuous everywhere! Since this function is not differentiable anywhere, many might call it a non-differentiable function.There are absolutely other examples.
Here are a few, note x>0 and y>0 and a&b not = 1 * log (xy) = log(x) + log(y) * log(x/y) = log(x) - log(y) * loga(x) = logb(x)*loga(b) * logb(bn) = n * log(xa) = a*log(x) * logb(b) = 1 * logb(1) = 0
The browser which is used for posting questions is almost totally useless for mathematical questions since it blocks most symbols.I am assuming that your question is about log base 3 of (x plus 1) plus log base 2 of (x-1).{log[(x + 1)^log2} + {log[(x - 1)^log3}/log(3^log2) where all the logs are to the same base - whichever you want. The denominator can also be written as log(3^log2)This can be simplified (?) to log{[(x + 1)^log2*(x - 1)^log3}/log(3^log2).As mentioned above, the expression can be to any base and so the expression becomesin base 2: log{[(x + 1)*(x - 1)^log3}/log(3) andin base 3: log{[(x + 1)^log2*(x - 1)}/log(2)
5x 12x = 17xx log(5) + x log(12) = x log(17)x [ log(5) + log(12) ] = x log(17)x log(60) = x log(17)x = 0This actually checks. Since anything to the zero power is ' 1 ',50 120 = 1 times 1, or 1and 170 = 1
log(x) + 4 - log(6) = 1 so log(x) + 4 + log(1/6) = 1 Take exponents to the base 10 and remember that 10log(x) = x: x * 104 * 1/6 = 10 x = 6/1000 or 0.006
log x + 2 = log 9 log x - log 9 = -2 log (x/9) = -2 x/9 = 10^(-2) x/9 = 1/10^2 x/9 = 1/100 x= 9/100 x=.09
Original Statement:x - 1 + 2 + log(x) = 3Simplify:x + 1 + log(x) = 3Subtract 1:x + log(x) = 2Lambert W-Function:x = (W(100*ln(10))/(ln(10)) = 1.7555794993... (rounded up).This considered log(x) to be base 10 log (x).