yes...
Hair colour is continuous because there is a continual range of values when it comes to hair colour
Well, firstly, the derivative of a function simply refers to slope. Usually we say that the function is not differentiable at a point.Say you have a function such as this:f(x)=|x|Another way to represent that would be as a piece-wise function:g(x) = { -x for x= 0The problem arises at the specific point x=0. If you look at the slope--the change in the function--from the left and right of x, you notice that it is different, negative 1 and positive 1. So, we can say that the function is not differentiable at x=0 because of that sudden change.There are however, a few functions that are nowhere differentiable. One example is the Weirstrass function. The even more ironic thing about this function is that it is continuous everywhere! Since this function is not differentiable anywhere, many might call it a non-differentiable function.There are absolutely other examples.
Not according to the usual definitions of "differentiable" and "continuous".Suppose that the function f is differentiable at the point x = a.Then f(a) is defined andlimit (h -> 0) [f(a+h) - f(a)]/h exists (has a finite value).If this limit exists, then it follows thatlimit (h -> 0) [f(a+h) - f(a)] exists and equals 0.Hence limit (h -> 0) f(a+h) exists and equals f(a).Therefore f is continuous at x = a.
Well, friend, the length of hair is continuous in nature. Just like a happy little stream flowing smoothly through a meadow, hair can vary in length from very short to very long with no sudden breaks or gaps. Embrace the uniqueness of your hair, and remember, there are no mistakes, just happy little accidents.
Negative the derivative of f(x), divided by f(x) squared. -f'(x) / f²(x)
discontinuous
No.
Weistrass function is continuous everywhere but not differentiable everywhere
Here are some: odd, even; periodic, aperiodic; algebraic, rational, trigonometric, exponential, logarithmic, inverse; monotonic, monotonic increasing, monotonic decreasing, real, complex; discontinuous, discrete, continuous, differentiable; circular, hyperbolic; invertible.
Natural eye colour is discontinuous. :) !
graph gx is the reflection of graph fx and then transformed 1 unit down
Definition: A function f is differentiable at a if f'(a) exists. it is differentiable on an open interval (a, b) [or (a, ∞) or (-∞, a) or (-∞, ∞)]if it is differentiable at every number in the interval.Example: Where is the function f(x) = |x| differentiable?Answer:1. f is differentiable for any x > 0 and x < 0.2. f is not differentiable at x = 0.That's mean that the curve y = |x| has not a tangent at (0, 0).Thus, both continiuty and differentiability are desirable properties for a function to have. These properties are related.Theorem: If f is differentiable at a, then f is continuous at a.The converse theorem is false, that is, there are functions that are continuous but not differentiable. (As we saw at the example above. f(x) = |x| is contionuous at 0, but is not differentiable at 0).The three ways for f not to be differentiable at aare:a) if the graph of a function f has a "corner" or a "kink" in it,b) a discontinuity,c) a vertical tangent
Discontinuous innovation is innovation that is divorced from prior common knowledge.
Discontinuous. There's no middle ground, someone either has it or doesn't.
yes a discontinuous function can be developed in a fourier series
its not