answersLogoWhite

0

Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.

User Avatar

Wiki User

7y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
JudyJudy
Simplicity is my specialty.
Chat with Judy
More answers

The specific points depend on the function. At any point where a function is discontinuous, it is not differentiable.

User Avatar

Wiki User

7y ago
User Avatar

If a function f(x) is discontinuous at any point then it cannot be differentiable at that point.

User Avatar

Wiki User

7y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Where is f(x) discontinuous but not differentiable Explain?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Is log x differentiable at 1?

yes...


Is hair color continuous or discontinuous variation?

Hair colour is continuous because there is a continual range of values when it comes to hair colour


When you say a function is not differentiable?

Well, firstly, the derivative of a function simply refers to slope. Usually we say that the function is not differentiable at a point.Say you have a function such as this:f(x)=|x|Another way to represent that would be as a piece-wise function:g(x) = { -x for x= 0The problem arises at the specific point x=0. If you look at the slope--the change in the function--from the left and right of x, you notice that it is different, negative 1 and positive 1. So, we can say that the function is not differentiable at x=0 because of that sudden change.There are however, a few functions that are nowhere differentiable. One example is the Weirstrass function. The even more ironic thing about this function is that it is continuous everywhere! Since this function is not differentiable anywhere, many might call it a non-differentiable function.There are absolutely other examples.


Can a graph be differentiable at a specific point but not continuous at the same point?

Not according to the usual definitions of "differentiable" and "continuous".Suppose that the function f is differentiable at the point x = a.Then f(a) is defined andlimit (h -> 0) [f(a+h) - f(a)]/h exists (has a finite value).If this limit exists, then it follows thatlimit (h -> 0) [f(a+h) - f(a)] exists and equals 0.Hence limit (h -> 0) f(a+h) exists and equals f(a).Therefore f is continuous at x = a.


How do you find critical value for a total revenue function?

If it is a differentiable function, you find the value at which its derivative is 0. But in general, you can plot it as a line graph and see where it peaks.