the coefficient of the expression is 1
the coeffficient of the variable is 5
The derivative of sin(x) is cos(x). Coefficients act like constants and always remain in derivatives. So, the derivative is -2cos(x).
You can't. tan x = sin x/cos x So sin x tan x = sin x (sin x/cos x) = sin^2 x/cos x.
No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)
(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.
sec x - cos x = (sin x)(tan x) 1/cos x - cos x = Cofunction Identity, sec x = 1/cos x. (1-cos^2 x)/cos x = Subtract the fractions. (sin^2 x)/cos x = Pythagorean Identity, 1-cos^2 x = sin^2 x. sin x (sin x)/(cos x) = Factor out sin x. (sin x)(tan x) = (sin x)(tan x) Cofunction Identity, (sin x)/(cos x) = tan x.
2 and 5 are coefficients of x and y respectively.
The expansion as in Taylor series for sin(x) is: sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...
The derivative of sin(x) is cos(x). Coefficients act like constants and always remain in derivatives. So, the derivative is -2cos(x).
y=sin x y=cos x cos x sin x = cos^2 x sin x = 1-sin^2 x sin x -1 + sin^2 x = 0 sin^2 x + sin x -1 = 0 Let y=sin x y^2+y-1 = 0 This equation is of form ay^2+by+c=0 a = 1 b = 1 c = -1 y=[-b+/-sqrt(b^2-4ac)]/2a] y=[-1 +/-sqrt(1^2-4(1)(-1)]/(2)(1) discriminant is b^2-4ac =5 y=[-1 +√(5)] / 2 y=[-1 -√(5)] / 2 sin x = [-1 +√(5)] / 2 x = sin^-1 [-1 +√(5)] / 2] = 0.6662394 radians x = sin^-1 [-1 -√(5)] / 2] = sin^-1 (-1.618) -- has no solution When x = 0.6662394 radians, sin x and cos x times cos x are equal.
Let y = sin(cos-1(2/5)) Suppose x = cos-1(2/5): that is, cos(x) = 2/5 then sin2(x) = 1 - cos2(x) = 1 - 4/25 = 21/25 so that sin(x) = sqrt(21)/5 which gives x = sin-1[sqrt(21)/5] Then y = sin(cos-1(2/5)) = sin(x) : since x = cos-1(2/5) =sin{sin-1[sqrt(21)/5]} = sqrt(21)/5 There will be other solutions that are cyclically related to this one but no range has been given for the solutions.
no only the coefficients can. like rad 5 but not x or y
The quantity to be multiplied by the multiplier is called multiplicand. Say sin(x) is multiplied by 5. Then sin(x) is the multiplicand. 5 is the multiplier. If sin(x) is the multiplier, then 5 would become the multiplicand.
2*sin^2(x) - 5*sin(x) + 2 = 0 is a quadratic equation in sin(x).therefore,{2*sin(x) - 1}*{sin(x) - 2)} = 0=> sin(x) = 1/2 or sin(x) = 2The second solution is rejected since sin(x) cannot exceed 1.The principal solution is x = arcsin(1/2) = pi/6 radians. Additional or alternative solutions will depend on the domain for x - which has not been given.
2.5
Y=10^sin(x) The derivative is: (log(5)+log(2))*cos(x)*2^sin(x)*5^sin(x) Use the chain rule, product rule, and power rules combined with sin(x) rule.
5
Tan(x) = Sin(x) / Cos(x) Hence Sin(x) / Cos(x) = Cos(x) Sin(x) = Cos^(2)[x] Sin(x) = 1 - Sin^(2)[x] Sin^(2)[x] + Sin(x) - 1 = 0 It is now in Quadratic form to solve for Sin(x) Sin(x) = { -1 +/-sqrt[1^(2) - 4(1)(-1)]} / 2(1) Sin(x) = { -1 +/-sqrt[5[} / 2 Sin(x) = {-1 +/-2.236067978... ] / 2 Sin(x) = -3.236067978...] / 2 Sin(x) = -1.61803.... ( This is unresolved as Sine values can only range from '1' to '-1') & Sin(x) = 1.236067978... / 2 Sin(x) = 0.618033989... x = Sin^(-1) [ 0.618033989...] x = 38.17270765.... degrees.