d/dx lnx=1/x
x (ln x + 1) + Constant
The solution to this is: (xx)'= (elnx to the power of x)'= (exlnx)'= (xlnx)'*exlnx= [x(1/x) + 1(lnx)]*exlnx = (lnx+1)*exlnx= (lnx+1)*xx
I do not see why the chain rule would not work here. d/dx (inx)^2 = 2(lnx) * 1/x = 2(lnx)/x
x5lnx?d/dx (uv)=u*dv/dx+v*du/dxd/dx (x5lnx)=x5*[d/dx(lnx)]+lnx*[d/dx(x5)]-The derivative of lnx is:d/dx(lnu)=(1/u)*[d/dx(u)]d/dx(lnx)=(1/x)*[d/dx(x)]d/dx(lnx)=(1/x)*[1]d/dx(lnx)=(1/x)-The derivative of x5 is:d/dx (xn)=nxn-1d/dx (x5)=5x5-1d/dx (x5)=5x4d/dx (x5lnx)=x5*[1/x]+lnx*[5x4]d/dx (x5lnx)=[x5/x]+5x4lnxd/dx (x5lnx)=x4+5x4lnx
1/X
-1/x2
-1
start by setting y=lnx^lnx take ln of both sides lny=lnx(ln(lnx)) differentiate dy/dx(1/y)=(1+ln(lnx))/x dy/dx=y(1+ln(lnx))/x we know that y=lnx^lnx so we can just substatute back in dy/dx=(lnx^lnx)*(1+ln(lnx))/x
d/dx of lnx is 1/x Therefore the derivative is 1/(1+x)
d/dx lnx=1/x
x (ln x + 1) + Constant
(xlnx)' = lnx + 1
The solution to this is: (xx)'= (elnx to the power of x)'= (exlnx)'= (xlnx)'*exlnx= [x(1/x) + 1(lnx)]*exlnx = (lnx+1)*exlnx= (lnx+1)*xx
I do not see why the chain rule would not work here. d/dx (inx)^2 = 2(lnx) * 1/x = 2(lnx)/x
Derivative of lnx= (1/x)*(derivative of x) example: Find derivative of ln2x d(ln2x)/dx = (1/2x)*d(2x)/dx = (1/2x)*2===>1/x When the problem is like ln2x^2 or ln-square root of x...., the answer won't come out in form of 1/x.
ln(x4)?d/dx(ln(u))=1/u*d/dx(u)d/dx(ln(x4))=[1/x4]*d/dx(x4)-The derivative of x4 is:d/dx(x4)=4x4-1d/dx(x4)=4x3d/dx(ln(x4))=[1/x4]*(4x3)d/dx(ln(x4))=4x3/x4d/dx(ln(x4))=4/x(lnx)4?Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(lnx)4=4(lnx)4-1*d/dx(lnx)d/dx(lnx)4=4(lnx)3*d/dx(lnx)-The derivative of lnx is:d/dx(ln(u))=1/u*d/dx(u)d/dx(lnx)=1/x*d/dx(x)d/dx(lnx)=1/x*(1)d/dx(lnx)=1/xd/dx(lnx)4=4(lnx)3*(1/x)d/dx(lnx)4=4(lnx)3/x