The derivative of 1/lnx, can be found easily using either the chain rule or the quotient rule. It is -1/[x*(lnx)2]
I do not see why the chain rule would not work here. d/dx (inx)^2 = 2(lnx) * 1/x = 2(lnx)/x
d/dx lnx=1/x
The solution to this is: (xx)'= (elnx to the power of x)'= (exlnx)'= (xlnx)'*exlnx= [x(1/x) + 1(lnx)]*exlnx = (lnx+1)*exlnx= (lnx+1)*xx
x5lnx?d/dx (uv)=u*dv/dx+v*du/dxd/dx (x5lnx)=x5*[d/dx(lnx)]+lnx*[d/dx(x5)]-The derivative of lnx is:d/dx(lnu)=(1/u)*[d/dx(u)]d/dx(lnx)=(1/x)*[d/dx(x)]d/dx(lnx)=(1/x)*[1]d/dx(lnx)=(1/x)-The derivative of x5 is:d/dx (xn)=nxn-1d/dx (x5)=5x5-1d/dx (x5)=5x4d/dx (x5lnx)=x5*[1/x]+lnx*[5x4]d/dx (x5lnx)=[x5/x]+5x4lnxd/dx (x5lnx)=x4+5x4lnx
The derivative of 1/lnx, can be found easily using either the chain rule or the quotient rule. It is -1/[x*(lnx)2]
1/X
-1/x2
-1
start by setting y=lnx^lnx take ln of both sides lny=lnx(ln(lnx)) differentiate dy/dx(1/y)=(1+ln(lnx))/x dy/dx=y(1+ln(lnx))/x we know that y=lnx^lnx so we can just substatute back in dy/dx=(lnx^lnx)*(1+ln(lnx))/x
I do not see why the chain rule would not work here. d/dx (inx)^2 = 2(lnx) * 1/x = 2(lnx)/x
d/dx lnx=1/x
(xlnx)' = lnx + 1
If you mean: y =(lnx)3 then: dy/dx = [3(lnx)2]/x ddy/dx = [(6lnx / x) - 3(lnx)2] / x2 If you mean: y = ln(x3) Then: dy/dx = 3x2/x3 = 3/x = 3x-1 ddy/dx = -3x-2 = -3/x2
The solution to this is: (xx)'= (elnx to the power of x)'= (exlnx)'= (xlnx)'*exlnx= [x(1/x) + 1(lnx)]*exlnx = (lnx+1)*exlnx= (lnx+1)*xx
d/dx of lnx is 1/x Therefore the derivative is 1/(1+x)
ln(x4)?d/dx(ln(u))=1/u*d/dx(u)d/dx(ln(x4))=[1/x4]*d/dx(x4)-The derivative of x4 is:d/dx(x4)=4x4-1d/dx(x4)=4x3d/dx(ln(x4))=[1/x4]*(4x3)d/dx(ln(x4))=4x3/x4d/dx(ln(x4))=4/x(lnx)4?Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(lnx)4=4(lnx)4-1*d/dx(lnx)d/dx(lnx)4=4(lnx)3*d/dx(lnx)-The derivative of lnx is:d/dx(ln(u))=1/u*d/dx(u)d/dx(lnx)=1/x*d/dx(x)d/dx(lnx)=1/x*(1)d/dx(lnx)=1/xd/dx(lnx)4=4(lnx)3*(1/x)d/dx(lnx)4=4(lnx)3/x