- ln (cscx + cotx) + C You use u substitution.
-1
You could try y = 1/sin(x) but I do not see how that helps.
A dot A = A2 do a derivative of both sides derivative (A) dot A + A dot derivative(A) =0 2(derivative (A) dot A)=0 (derivative (A) dot A)=0 A * derivative (A) * cos (theta) =0 => theta =90 A and derivative (A) are perpendicular
The derivative of e7x is e7 or 7e.The derivative of e7x is 7e7xThe derivative of e7x is e7xln(7)
Trig functions have their own special derivatives that you will have to memorize. For instance: the derivative of sinx is cosx. The derivative of cosx is -sinx The derivative of tanx is sec2x The derivative of cscx is -cscxcotx The derivative of secx is secxtanx The derivative of cotx is -csc2x
d/dx (-cscx-sinx)=cscxcotx-cosx
According to Wolfram Alpha, input:integral csc x it is -log[cot(x) + csc(x)] + constant You can verify this by taking the derivative of the purported integral.
Using the u substitution method of derivation (selecting sinx as u and cosxdx as du), you get f'(x)=cscx.
pi divided by 6 is a constant and so its first derivative is 0. And since that is also a constant, the second derivative is 0. It is not clear what f(x) = csc(x) has to do with that!
- ln (cscx + cotx) + C You use u substitution.
-1
d/dx cscx = d/dx 1/sinx = d/dx (sinx)-1= -(sinx)-2 cosx = -cosx/sin2x = -1/sinx.cosx/sinx = -cscx cotx I suggest you copy this out onto paper so it is more clear. The / signs make it harder to see what is happening compared to horizontal divide lines.
y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx
sinx cscx = 1 is the same thing as sinx(1/sinx) = 1 which is the same as sinx/sinx = 1. This evaluates to 1=1, which is true.
"Derivative of"
You could try y = 1/sin(x) but I do not see how that helps.