answersLogoWhite

0


Best Answer

d/dx (-cscx-sinx)=cscxcotx-cosx

User Avatar

Wiki User

βˆ™ 11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you find the derivative of - csc x - sin x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the derivative of csc x?

The derivative of csc(x) is -cot(x)csc(x).


What is the derivative of cscx?

d/dx csc(x) = - csc(x) tan(x)


Proof of the derivative of the cosecant function?

Express the cosecant in terms of sines and cosines; in this case, csc x = 1 / sin x. This can also be written as (sin x)-1. Remember that the derivative of sin x is cos x, and use either the formula for the derivative of a quotient (using the first expression), or the formula for the derivative of a power (using the second expression).


Csc squared divided by cot equals csc x sec. can someone make them equal?

cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)


What is the anti-derivative of co secant x?

According to Wolfram Alpha, input:integral csc x it is -log[cot(x) + csc(x)] + constant You can verify this by taking the derivative of the purported integral.


Find derivative of sinx using first principle?

The derivative of sin(x) is cos(x).


Write the expression in terms of sine and cosine and simplify so that no quotients appear in the final expression. cscx(sinx plus cosx)?

csc(x)*{sin(x) + cos(x)} = csc(x)*sin(x) + csc(x)*cos(x) =1/sin*(x)*sin(x) + 1/sin(x)*cos(x) = 1 + cot(x)


Derivative of cosx?

The derivative of cos(x) is negative sin(x). Also, the derivative of sin(x) is cos(x).


How do you simplify csc theta cot theta?

There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.


How do you solve csc x sin x equals cos x cot x plus?

Suppose csc(x)*sin(x) = cos(x)*cot(x) + y then, ince csc(x) = 1/sin(x), and cot(x) = cos(x)/sin(x), 1 = cos(x)*cos(x)/sin(x) + y so y = 1 - cos2(x)/sin(x) = 1 - [1 - sin2(x)]/sin(x) = [sin2(x) + sin(x) - 1]/sin(x)


1 over sin x equals what?

1/sin x = csc x


What is the 87th derivative of sin x?

Every fourth derivative, you get back to "sin x" - in other words, the 84th derivative of "sin x" is also "sin x". From there, you need to take the derivative 3 more times, getting:85th derivative: cos x86th derivative: -sin x87th derivative: -cos x