A dot A = A2 do a derivative of both sides derivative (A) dot A + A dot derivative(A) =0 2(derivative (A) dot A)=0 (derivative (A) dot A)=0 A * derivative (A) * cos (theta) =0 => theta =90 A and derivative (A) are perpendicular
the derivative is 0. the derivative of a constant is always 0.
Derivative of 4x is 4.
The derivate of 3x is 3; the derivative of -1 is 0. So, the derivative of 3x-1 is simply 3.The derivate of 3x is 3; the derivative of -1 is 0. So, the derivative of 3x-1 is simply 3.The derivate of 3x is 3; the derivative of -1 is 0. So, the derivative of 3x-1 is simply 3.The derivate of 3x is 3; the derivative of -1 is 0. So, the derivative of 3x-1 is simply 3.
the derivative of 3x is 3 the derivative of x cubed is 3 times x squared
"Derivative of"
well, the second derivative is the derivative of the first derivative. so, the 2nd derivative of a function's indefinite integral is the derivative of the derivative of the function's indefinite integral. the derivative of a function's indefinite integral is the function, so the 2nd derivative of a function's indefinite integral is the derivative of the function.
Velocity is the derivative of position.Velocity is the derivative of position.Velocity is the derivative of position.Velocity is the derivative of position.
A dot A = A2 do a derivative of both sides derivative (A) dot A + A dot derivative(A) =0 2(derivative (A) dot A)=0 (derivative (A) dot A)=0 A * derivative (A) * cos (theta) =0 => theta =90 A and derivative (A) are perpendicular
Trig functions have their own special derivatives that you will have to memorize. For instance: the derivative of sinx is cosx. The derivative of cosx is -sinx The derivative of tanx is sec2x The derivative of cscx is -cscxcotx The derivative of secx is secxtanx The derivative of cotx is -csc2x
The derivative of xe is e. The derivative of xe is exe-1.
The derivative of 40 is zero. The derivative of any constant is zero.
the derivative is 0. the derivative of a constant is always 0.
The derivative with respect to 'x' is 4y3 . The derivative with respect to 'y' is 12xy2 .
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2
Derivative of 4x is 4.
The derivative of 5x is 5.