answersLogoWhite

0


Best Answer

csc[]tan[] = sec[]. L: Change csc[] into one over sin[]. Change tan[] into sin[] over cos[]. R: Change sec[] into one over cos[]. 1/sin[] times sin[]/cos[] = 1/cos[]. L: To multiply 2 fractions, multiply the numerators, and multiply the denominators, and put the numerators' product over the denominators' product. R: Nothing more to do. sin[]/sin[]cos[] = 1/cos[]. L: You have a sin[] on both top and bottom. Cross them off to get a one on the top. 1/cos[] = 1/cos[]. Done. [] is theta. L is the left side of the equation. R is the right side.

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: H ow do you verify that csc theta tan theta sec theta?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How do you get the csc theta given tan theta in quadrant 1?

If tan(theta) = x then sin(theta) = x/(sqrt(x2 + 1) so that csc(theta) = [(sqrt(x2 + 1)]/x = sqrt(1 + 1/x2)


What is tan x csc x?

tan(x)*csc(x) = sec(x)


How do you simplify cos theta times csc theta divided by tan theta?

'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2


What is whole under root of sec theta - 1 over sec theta 1?

Ut is equual to tan(theta) / (sec(theta) + 1)


What is sec squared theta times cos squared theta minus tan squared theta?

Tan^2


How do you simplify sin theta times csc theta divided by tan theta?

Since sin(theta) = 1/cosec(theta) the first two terms simply camcel out and you are left with 1 divided by tan(theta), which is cot(theta).


Sec squared theta plus tan squared theta equals to 13 12 and sec raised to 4 theta minus tan raised to 4 theta equals to how much?

It also equals 13 12.


How do you simplify csc theta tan theta?

With all due respect, you don't really want to know howto solve it.You just want the solution.csc(Θ) = 1/sin(Θ)tan(Θ) = sin(Θ)/cos(Θ)csc(Θ) x tan(Θ) = 1/sin(Θ) x sin(Θ)/cos(Θ) = 1/cos(Θ) = sec(Θ)


How can you verify 1 plus tan theta divided by 1 minus tan theta equals cot theta plus 1 divided by cot theta minus 1?

It depends if 1 plus tan theta is divided or multiplied by 1 minus tan theta.


Csc divided by cot squared equals tan multiplied by sec?

Yes.


What is sec theta - 1 over sec theta?

Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta


Csc x tan x?

If you want to simplify that, it usually helps to express all the trigonometric functions in terms of sines and cosines.