csc[]tan[] = sec[]. L: Change csc[] into one over sin[]. Change tan[] into sin[] over cos[]. R: Change sec[] into one over cos[]. 1/sin[] times sin[]/cos[] = 1/cos[]. L: To multiply 2 fractions, multiply the numerators, and multiply the denominators, and put the numerators' product over the denominators' product. R: Nothing more to do. sin[]/sin[]cos[] = 1/cos[]. L: You have a sin[] on both top and bottom. Cross them off to get a one on the top. 1/cos[] = 1/cos[]. Done. [] is theta. L is the left side of the equation. R is the right side.
d/dx csc(x) = - csc(x) tan(x)
(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.
ln|sec x + tan x| + C.
d/dx(uv)=u*dv/dx+v*du/dxd/dx(secxtanx)=secx*[d/dx(tanx)]+tanx*[d/dx(secx)]-The derivative of tanx is:d/dx(tan u)=[sec(u)]2*d/dx(u)d/dx(tan x)=[sec(x)]2*d/dx(x)d/dx(tan x)=[sec(x)]2*(1)d/dx(tan x)=(sec(x))2=sec2(x)-The derivative of secx is:d/dx(sec u)=[sec(u)tan(u)]*d/dx(u)d/dx(sec x)=[sec(x)tan(x)]*d/dx(x)d/dx(sec x)=[sec(x)tan(x)]*(1)d/dx(sec x)=sec(x)tan(x)d/dx(secxtanx)=secx*[sec2(x)]+tanx*[sec(x)tan(x)]d/dx(secxtanx)=sec3(x)+sec(x)tan2(x)
1 (sec x)(sin x /tan x = (1/cos x)(sin x)/tan x = (sin x/cos x)/tan x) = tan x/tan x = 1
If tan(theta) = x then sin(theta) = x/(sqrt(x2 + 1) so that csc(theta) = [(sqrt(x2 + 1)]/x = sqrt(1 + 1/x2)
tan(x)*csc(x) = sec(x)
'csc' = 1/sin'tan' = sin/cosSo it must follow that(cos) (csc) / (tan) = (cos) (1/sin)/(sin/cos) = (cos) (1/sin) (cos/sin) = (cos/sin)2
Ut is equual to tan(theta) / (sec(theta) + 1)
Tan^2
Since sin(theta) = 1/cosec(theta) the first two terms simply camcel out and you are left with 1 divided by tan(theta), which is cot(theta).
It also equals 13 12.
With all due respect, you don't really want to know howto solve it.You just want the solution.csc(Θ) = 1/sin(Θ)tan(Θ) = sin(Θ)/cos(Θ)csc(Θ) x tan(Θ) = 1/sin(Θ) x sin(Θ)/cos(Θ) = 1/cos(Θ) = sec(Θ)
It depends if 1 plus tan theta is divided or multiplied by 1 minus tan theta.
Yes.
Let 'theta' = A [as 'A' is easier to type] sec A - 1/(sec A) = 1/(cos A) - cos A = (1 - cos^2 A)/(cos A) = (sin^2 A)/(cos A) = (tan A)*(sin A) Then you can swap back the 'A' with theta
If you want to simplify that, it usually helps to express all the trigonometric functions in terms of sines and cosines.