tan(135) = -tan(180-135) = -tan(45) = -1
cot(15)=1/tan(15) Let us find tan(15) tan(15)=tan(45-30) tan(a-b) = (tan(a)-tan(b))/(1+tan(a)tan(b)) tan(45-30)= (tan(45)-tan(30))/(1+tan(45)tan(30)) substitute tan(45)=1 and tan(30)=1/√3 into the equation. tan(45-30) = (1- 1/√3) / (1+1/√3) =(√3-1)/(√3+1) The exact value of cot(15) is the reciprocal of the above which is: (√3+1) /(√3-1)
1/ Tan = 1/ (Sin/Cos) = Cos/Sin = Cot (Cotangent)
tangent of pi/4 = 1
cot2x-tan2x=(cot x -tan x)(cot x + tan x) =0 so either cot x - tan x = 0 or cot x + tan x =0 1) cot x = tan x => 1 / tan x = tan x => tan2x = 1 => tan x = 1 ou tan x = -1 x = pi/4 or x = -pi /4 2) cot x + tan x =0 => 1 / tan x = -tan x => tan2x = -1 if you know about complex number then infinity is the solution to this equation, if not there's no solution in real numbers.
1
1/sqrt(3)
tan(1) = 1.5574 where the angle is measured in radians.
tan(135) = -tan(180-135) = -tan(45) = -1
cot(15)=1/tan(15) Let us find tan(15) tan(15)=tan(45-30) tan(a-b) = (tan(a)-tan(b))/(1+tan(a)tan(b)) tan(45-30)= (tan(45)-tan(30))/(1+tan(45)tan(30)) substitute tan(45)=1 and tan(30)=1/√3 into the equation. tan(45-30) = (1- 1/√3) / (1+1/√3) =(√3-1)/(√3+1) The exact value of cot(15) is the reciprocal of the above which is: (√3+1) /(√3-1)
The value of tan A is not clear from the question.However, sin A = sqrt[tan^2 A /(tan^2 A + 1)]
tan(135 degrees) = negative 1.
For the tangential value tan θ = 1/2, the angle θ is 26.565° (0.464 radians). The tangent is the opposite side over the adjacent side for an angle, or otherwise sin θ /cos θ.
Any number can be a tan. So -sqrt(17), 19.56, 45678942 are all examples of tan. Cosine can have any value in the range [-1, 1].
there r over 1 billion kinds of pie.
1
1/ Tan = 1/ (Sin/Cos) = Cos/Sin = Cot (Cotangent)