cos^3(x) = cos^2(x) cos(x)
= (1-sin^2(x))·cos(x)
=cos(x) - sin^2(x)·cos(x)
Integrating, the integral of cos(x) is sin(x) -----(1)
To integrate sin^2(x) cos(x)·dx, let sin(x) =u
cos(x)·dx = du
The integral becomes integral (u^2)·du = u^3/3 = (sin^3(x))/3 --(2)
(1)-(2) gives the answer to your question
sin(x) - (sin3(x))/3 +C
*Edit*
When we are solving the integral of cos(x) - sin^2(x)·cos(x),
& the two terms are split up, do not forget to take our signs into account, in this case;
the positive or negative constants/coefficients within what we are taking the integral of.
So here, ∫(cos(x) - sin^2(x)·cos(x))
is split up into ∫cos(x) minus ∫sin^2(x)·cos(x)
the 2nd integrand (function which is being integrated)
-sin^2(x)·cos(x)
is the same as
(-1)·sin^2(x)·cos(x)
So when taking the integral of this integrand, pull -1, a constant, out & place it in front of the integral symbol , ∫.
So once we substitute u for sin(x) & integrate our integrand (original function) which we have now put into terms of u & du, and get (u^3)/3, as the integral of sin^2(x)·cos(x)) [again, (u^3)/3 is in terms of du, when u=sin(x)] we simply cannot ignore the fact that we are subtracting that integral from that of cos(x), no matter how easy it seems to just ignore our negatives.
W.e are subtracting ∫(u^2)·du from whatever the ∫cos(x) is equal to, not adding them.
sin(X) MINUS (sin^3(x))/3 + C
should be the correct answer.
ANOTHER WAY CAN BE SUBSTITUTING THE VALUE OF COS^3X FROM COS3X i.e
INTEGRATE COS^3X....................................1
4COS^3X- 3COSX
4COS^3X- 3COSX= COS3X
COS^3X=(COS3X+3COX)/3
SUBSTITUTING THE VALUE OF COS^3X IN EQUATION 1
INTEGRAL (COS3X+3COSX)/3
AS 1/3 IS CONSTANT IT CAME OUT OF INTEGRAL
INTEGRAL OF COS3X=SINX/3
INTEGRAL OF 3COSX= 3SINX..........................................................
The integral of x cos(x) dx is cos(x) + x sin(x) + C
I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3
The integral of tan(x) dx = ln | sec(x) | + cto solve... tan(x) = sin(x)/cos(x)the integral of (sin(x)/cos(x) dx) ... let u = cos(x) then du = -sin(x) dx= the integral of (1/u -du)= -ln | u | + c= -ln | cos(x) | + c= ln | (cos(x))^-1 | + c ... or ... ln | 1/cos(x) | + c= ln | sec(x) | + c
convert tan^2x into sin^2x/cos^2x and secant x into 1/cos x combine terms for integral sin^2x/cos^3x dx then sub in u= cos^3x and du=-2sin^2x dx
Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant
(3pi-7)/9 To verify this go to the link and enter integrate x cos(x)^3 from 0 to pi/2.
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
sin integral is -cos This is so because the derivative of cos x = -sin x
The integral of x cos(x) dx is cos(x) + x sin(x) + C
The integral of cosine cubed is sinx- 1/3 sin cubed x + c
-cos x + Constant
I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3
sin2x + c
The integral of tan(x) dx = ln | sec(x) | + cto solve... tan(x) = sin(x)/cos(x)the integral of (sin(x)/cos(x) dx) ... let u = cos(x) then du = -sin(x) dx= the integral of (1/u -du)= -ln | u | + c= -ln | cos(x) | + c= ln | (cos(x))^-1 | + c ... or ... ln | 1/cos(x) | + c= ln | sec(x) | + c
- cos(1 - X) + C
∫ cos(x) dx = -sin(x) + C
convert tan^2x into sin^2x/cos^2x and secant x into 1/cos x combine terms for integral sin^2x/cos^3x dx then sub in u= cos^3x and du=-2sin^2x dx