answersLogoWhite

0


Best Answer

cos^3(x) = cos^2(x) cos(x)

= (1-sin^2(x))·cos(x)

=cos(x) - sin^2(x)·cos(x)

Integrating, the integral of cos(x) is sin(x) -----(1)

To integrate sin^2(x) cos(x)·dx, let sin(x) =u

cos(x)·dx = du

The integral becomes integral (u^2)·du = u^3/3 = (sin^3(x))/3 --(2)

(1)-(2) gives the answer to your question

sin(x) - (sin3(x))/3 +C

*Edit*

When we are solving the integral of cos(x) - sin^2(x)·cos(x),

& the two terms are split up, do not forget to take our signs into account, in this case;

the positive or negative constants/coefficients within what we are taking the integral of.

So here, ∫(cos(x) - sin^2(x)·cos(x))

is split up into ∫cos(x) minus ∫sin^2(x)·cos(x)

the 2nd integrand (function which is being integrated)

-sin^2(x)·cos(x)

is the same as

(-1)·sin^2(x)·cos(x)

So when taking the integral of this integrand, pull -1, a constant, out & place it in front of the integral symbol , ∫.

So once we substitute u for sin(x) & integrate our integrand (original function) which we have now put into terms of u & du, and get (u^3)/3, as the integral of sin^2(x)·cos(x)) [again, (u^3)/3 is in terms of du, when u=sin(x)] we simply cannot ignore the fact that we are subtracting that integral from that of cos(x), no matter how easy it seems to just ignore our negatives.

W.e are subtracting ∫(u^2)·du from whatever the ∫cos(x) is equal to, not adding them.

sin(X) MINUS (sin^3(x))/3 + C

should be the correct answer.

ANOTHER WAY CAN BE SUBSTITUTING THE VALUE OF COS^3X FROM COS3X i.e

INTEGRATE COS^3X....................................1

4COS^3X- 3COSX

4COS^3X- 3COSX= COS3X

COS^3X=(COS3X+3COX)/3

SUBSTITUTING THE VALUE OF COS^3X IN EQUATION 1

INTEGRAL (COS3X+3COSX)/3

AS 1/3 IS CONSTANT IT CAME OUT OF INTEGRAL

INTEGRAL OF COS3X=SINX/3

INTEGRAL OF 3COSX= 3SINX..........................................................

User Avatar

Wiki User

βˆ™ 13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the integral of cos cubed x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Integral of x cosx dx?

The integral of x cos(x) dx is cos(x) + x sin(x) + C


Integral of sec2x-cosx plus x2dx?

I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3


What is the integration of tanx?

The integral of tan(x) dx = ln | sec(x) | + cto solve... tan(x) = sin(x)/cos(x)the integral of (sin(x)/cos(x) dx) ... let u = cos(x) then du = -sin(x) dx= the integral of (1/u -du)= -ln | u | + c= -ln | cos(x) | + c= ln | (cos(x))^-1 | + c ... or ... ln | 1/cos(x) | + c= ln | sec(x) | + c


Integral of tan square x secant x?

convert tan^2x into sin^2x/cos^2x and secant x into 1/cos x combine terms for integral sin^2x/cos^3x dx then sub in u= cos^3x and du=-2sin^2x dx


What is the integral of sin x times The exponential of x Times Square x?

Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant

Related questions

What is the integral of zero to pai by two x cos cubed x?

(3pi-7)/9 To verify this go to the link and enter integrate x cos(x)^3 from 0 to pi/2.


Integral of 1 divided by sinx cosx?

Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C


Why sin integral is cos?

sin integral is -cos This is so because the derivative of cos x = -sin x


Integral of x cosx dx?

The integral of x cos(x) dx is cos(x) + x sin(x) + C


What is the integral of cosine cubed?

The integral of cosine cubed is sinx- 1/3 sin cubed x + c


What is the integral of sin x?

-cos x + Constant


Integral of sec2x-cosx plus x2dx?

I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3


Cos x sin x integral?

sin2x + c


What is the integration of tanx?

The integral of tan(x) dx = ln | sec(x) | + cto solve... tan(x) = sin(x)/cos(x)the integral of (sin(x)/cos(x) dx) ... let u = cos(x) then du = -sin(x) dx= the integral of (1/u -du)= -ln | u | + c= -ln | cos(x) | + c= ln | (cos(x))^-1 | + c ... or ... ln | 1/cos(x) | + c= ln | sec(x) | + c


What is the integral for sin 1-x?

- cos(1 - X) + C


What is the integral of cosine?

∫ cos(x) dx = -sin(x) + C


Integral of tan square x secant x?

convert tan^2x into sin^2x/cos^2x and secant x into 1/cos x combine terms for integral sin^2x/cos^3x dx then sub in u= cos^3x and du=-2sin^2x dx